HELSINKI UNIVERSITY OF TECHNOLOGY 24.11.1999
Telecommunications Software and Multimedia Laboratory

Tik-111.590 Research seminar on digital media

Fall 2000: XML

XML Repositories

Kari Kellokoski
46772r

XML Repositories

Kari Kellokoski
Student at HUT Department of Electrical and Communications
Engineering

Kari . kel | okoski @ki . fi

Abstract

This paper briefly discusses the concept of XML Repositories. As the
concept is not only a simple database, the XML Repository is discussed after
the requirements of XML databases are considered. Finally couple of
examples of available applicationse are discussed briefly.

1 INTRODUCTION AND OVERVIEW

There is lot of expectations on XML, how it should tie up internet, ease the work of
application designers and give the control for users to locate and use the information
they seek. The technology is present, however, XML is not a solution. It is merely a
tool that enables us to take advantage of the enormous information that is —and is not —
available.

To that all information to be available, what is needed - of course - is a database. Even
XML provides many of the things found in databases: storage (the XML document),
schemas (DTDS, XML schema languages), query languages (XQL, XML-QL, QUILT,
etc.), programming interfaces (SAX, DOM), it lacks many of the things found in real
databases: efficient storage, indexes, security, transactions and data integrity, multi-user
access, triggers, queries across multiple documents, and so on. Although an XML
document contains data, without any additional software to help process that data, it is
no more a database than any other text file.

This paper discusses the tecnologies needed to make data stored in XML documents
available through a repository. Repository can be taken as a Database of storing XML
data or a Repository defingn data formats. Databases storing the XML data is the
starting point for this paper, but that it will go further. XML provides a standard for
defining data formats for transportation across the web and this is where the XML
Repositories step in. XML Repositories are discussed after the basics - the databases —
are discussed, starting from the relation to EDI and contiuning to it’s role in XML
schemantic itself.

Goal of this paper is to give a starting point in information of XML storage handling and
Repositories; what are the specifications for xml databases, what is a repository and how
does it work. Also examples of current tools are briefly discussed.

2 DATABASE FOR XML DATA

2.1 database/Repository Requirements

XML enables many new technologies, including Internet Search Engines, Electronic
Commerce, EDI, Self-describing BLOBS and Distributed Object file Systems, Data Re-
purposing, Content Personalization (intelligent pull, agent accumulation, and push),
Customized Bandwidth Allocation, Individual Content Cache, etc. All of the exciting
applications described above require data persistence, and these requirements are very
different from the requirements of monolithic file storage we are used to. XML extends
HTML’s simple unidirectional linking, adding support for links to multiple targets,
indirect addressing and bidirectionality. Handling this rich linking requires a storage
mechanism with far more powerful management of references between objects than that
provided by the file system or relational databases. In order to effectively address the
XML opportunity the storage mechanisms must also be able to understand the structure
of XML content—which is composed of a dynamic number of objects—while scaling
effectively to handle increased usage load and data volume. Furthermore, XML’s object
centric focus will create the need for an API that enables rich object-centric
manipulation from object-oriented languages like C++ and Java. In other words, what is
needed is an XML-aware object repository. Only an object database management system
(ODBMS) can maintain information about XML document structure in a scalable
manner while handling standard data types and BLOBs with rich hyperlinking and
navigation in the database.

XML documents fall into two broad categories: data-centric and document-centric.
Data-centric documents are those where XML is used as a data transport. They include
sales orders, patient records, and scientific data. Their physical structure -- the order of
sibling elements, whether data is stored in attributes or PCDATA-only elements,
whether entities are used -- is often unimportant. A special case of data-centric
documents is dynamic Web pages, such as online catalogs and address lists, which are
constructed from known, regular sets of data. Document-centric documents are those in
which XML is used for its SGML-like capabilities, such as in user's manuals, static Web
pages, and marketing brochures. They are characterized by irregular structure and mixed
content and their physical structure is important.

To store and retrieve the data in data-centric documents, you will need a database that is
tuned for data storage, such as a relational or object-oriented database, and some sort of
data transfer software. This may be built in to the database or might be third-party
middleware. Depending on your needs, you may need Web publishing abilities as well.

To store and retrieve document-centric documents, you will need a content management
system, which is a system designed to store content fragments, such as procedures,
chapters, and glossary entries, as well as document metadata, such as author names,
revision dates, and document numbers. Such systems generally include editors, version
control, and the ability to construct new documents from existing fragments. Although
content management systems use a database for storage, this is hidden from the user.

[16,18]

2.2 Comparing Database Types

2.2.1 File System Storage of XML Data

HTML storage management is almost always implemented using flat file storage. This
is because HTML, lacking any definable structure, is stored as a monolithic block.
Using the file system this way provides acceptable functionality, and therefore wins out
because it is extremely easy to implement. There are a number of tools that build on the
file systems functionality, and file systems are included in operating systems at no
additional charge. XML, however, has very different storage requirements. XML
applications must store and index the fine-grained elements as well as the document
structure. In addition, they must be capable of linking these fine-grained elements
directly to each other and to a variety of data types containing associated information.
The increased demands implied by this functionality mean that additional care must be
taken to build a system which scales under increasing load. Attempts to parse XML data
of any complexity would overwhelm the capabilities of the file system to maintain the
rich linking structure and semantics of the data. Of course, the alternative is to store the
XML data as BLOBs and then parse it on the fly each time it is used. This results in sub-
optimal performance, because of repeated parsing. In addition, once the data were
parsed, the file system could not execute the complex data manipulation required. In
addition, this BLOB storage approach undermines the ability to link various disparate
elements into a rich tapestry of information that models real-world usage cases. Of
course, implementing all of these features on top of the file system is a possibility,
through custom development, but this would essentially recreate object database
functionality from scratch.

2.2.2 Relational Database Storage of XML Data

Relational database management systems (RDBMS) are the other plausible candidate.
Unfortunately, their table-based data model is very poorly suited to the hierarchical,
interconnected nature of structured XML content. Never the best systems for managing
variable length data and BLOBs, RDBMSs are further hampered by the fact that they
must represent the tree structure of XML content with an inefficient set of tables and
joins. Relational databases disassemble the XML objects in order to fit them into their
tabular architecture. As a result the XML object’s structure and semantics are either lost,
minimizing its value, or they must be duplicated in the design of the database.
Duplicating the structure and semantics of complex XML objects in the design of the
database is very difficult, particularly if the structure of the XML data is variable, as it
almost always is. The rigidity of the relational design is a poor fit with the dynamic
assembly and manipulation of XML data. Relational databases also cannot handle
object-level locking, the best they can provide is row-level locking. Since relational
databases decompose XML elements into various tables, linked via keys, it is very
difficult to implement an effective locking scheme that doesn’t dramatically hinder
concurrent use and scalability. In concurrent editing environments, there will be an

increase in demand for related objects from disparate users. Relational databases
respond by locking entire rows across multiple tables. This can cause unacceptable
performance degradation if multiple users are requesting different objects that are
locked via this broad locking scheme. If the DBA responds by separating the
information into a larger number of more granular tables, the performance is degraded
by the number of joins required to model the richly linked structure of structured XML
content. In addition, relational databases are typically too heavyweight to form an
infrastructure for embeddable storage and require substantial development to adapt to
the complex structure of structured XML content. Quite simply, relational databases,
while excellent for many purposes, are not architecturally compatible with the storage
needs of XML data.

2.2.3 Object Database Storage of XML Data

The architecture of object databases is ideally suited to handling XML data, in fact the
adoption of XML data could be the “killer application” for the object database market.
Object databases are designed to handle objects in their native forms. The objects then
maintain their own data, methods, relationships and the semantics of the whole model.
This is ideal for the creation and management of hierarchical XML trees, while
providing both hierarchical tree navigation and rich link traversal. For example,
traversing to the other side of a tree in the two dimensional relational model forces the
developer to climb up the tree, through joins, and then back down the other side. The
rich relationship linking of an object oriented model enables both hierarchical
navigation and rapid branch traversal, reducing computation and increasing
performance. Object databases are also designed to handle arbitrary, variable-length data
types and interrelated data. This is critical due to the various data types linked within
structured XML content. XML also enables an ever-changing web of relationships
between hyperlinked data elements, such as on-the-fly creation of documents. Object
databases, with their flexibility and rich relationship management are ideal for managing
this type of information.

Those object databases that allow object-level locking, provide for a much more
granular locking than relational or file system-based solutions. This granular locking is
critical for user scalability, since it limits the conflicts between user requests for data.
Object databases are also designed to handle larger than memory content, providing for
content scalability. Object databases also offer more simplified creation and
management of distributed partitions, which further addresses the issue of database
volume scalability and distributed implementation. In short, object databases were
designed to address the very requirements that XML is just now starting to force upon
tomorrow’s storage solutions.

Just as most software developers would never consider developing their own encryption
technology for a new product, licensing it instead from a third-party vendor selling best-
of-breed solutions, it makes sense for XML developers to seek a third-party storage
engine that instantly provides them with the feature set they require for effective XML
data management. These applications need a mature database engine well-suited to the
structure and data types associated with XML.

2.2.4 The Ideal Repository for XML Data

The ideal XML repository should address the needs of XML as well as the needs of the
associated applications. In evaluating the requirements of applications in this field, the
following criteria are critical: (1) scalability, (2) language support, (3) ease of
programming and (4) embeddability. Scalability will be very important since the XML
applications described above will run on both the client and the server. It is important
that the object database scale down as well as up, while leveraging the same APIs, to
simplify application development. Language support is also important. Ease of
programming is critical due to the compressed development cycles, particularly in the
Internet. Embeddability encompasses two criteria--zero-management and low memory
footprint. Embeddability is an interesting issue since it has both short and long-term
ramifications. In the short-term, embeddability it important because most initial XML
applications, lacking sufficient XML support in the file system, will build-in this
support. However, long-term the object database will replace the standard file manager
running on top of the file system. This of course will make embeddability an absolute
requirement.

Storing and retrieving XML data is only the start. In addition to standard XML data
storage, the ideal repository would offer tightly integrated XML-specific tree navigation,
versioning, management of arbitrary links, import/export, publishing of structured
content on the web, support for object-oriented programming languages as well as
common scripting languages, and more. Building these facilities on top of a object
database are non-trivial, yet they are critical to the actual process of managing and
manipulating the XML data stored in the object database.

[16]
2.3 Conclusion

Because XML applications have a far wider scope than their HTML counterparts, in
terms of both application domain and type of data being managed, existing solutions for
HTML storage are not sufficient for XML. File system-based solutions do not support
XML’s rich linking and hierarchical tree structure, negating XML’s value-add.
Relational databases are based on a two-dimensional table-based architecture that is also
ill-suited to the needs of XML. Attempts to force a relational database into storing XML
will result in sub-optimal performance, concurrent access and scalability due to the
architectural mismatch between XML content and relational databases. The only
database architecture that is suited to the demands of XML is the object database. Only
object databases support granular element access and locking for superior concurrent
access, rich high-performance hyperlinking and fast hierarchical navigation.

But there is an other point of view; Specialized XML servers and object databases being
the natural storage point for XML documents and data, there is a question that will arise
eventually: "So where does all this XML data come from?" The answer, of course, is:
"From the relational databases that underpin the majority of business applications in use
today." For most XML applications, the creation and ongoing maintenance of a separate
"XML repository" is an unnecessary development expense. Instead, all most companies
need to do is take information from existing databases and render it as XML so it may
be shared and consumed more easily. Of course, if the relational database in question

has object capabilities, such as Oracle8i, then the task of rendering and updating data as
XML is greatly simplified.

[16,17]

3 REPOSITORIES

3.1 The Role of Edi

In the growing world of electronic commerce, common standards are needed, especially
in an environment in which machines talk to machines. XML is a standard that governs
how data is to be represented. It has provisions for defining data elements plus
extending and customizing data structures. The power of XML is its flexibility to define
an arbitrary data structure for both machines and people. A data structure defined in
XML can be validated and easily parsed by using readily accessible, standard parsers. Its
standards are predominantly applied to data schemas. What ASCII is to character
encoding, XML is to data structures. In summary, XML gives you the power to specify
the vocabulary but it doesn't impose or attempt to standardize the individual elements of
the vocabulary.

XML isn't a dictionary, only a means of formulating one. What is required is a standard
that can embody a business dictionary in the context of business processes. This is
where EDI comes in. With its long history, EDI provides common meaning to business
transactions through the use of standard business documents. These documents -
purchase orders, invoices, etc. - represent the contents of day-to-day business
transactions. The set of business documents encapsulates business events and processes.

There are many standard bodies associated with EDI. The common ones are EDIFACT
(EDI For Administration, Commerce and Transport), used primarily in international
circles, and ANSI X.12, widely used in North America. EDI embodies more than just
data definition, as it also dictates the transporting and administering of the documents.

While the EDI documents provide a rich platform for business communication across
different industries, from retail to government, they're sometimes viewed as being too
rigid for certain businesses. Although the EDI documents provide optional capabilities,
the documents can't be easily extended like XML. As business processes change, the
demand for new fields arises. Users of EDI begin to tweak the standards by placing
information where it doesn't belong in the documents. Data that didn't fit often ends up
in unused fields. The semantic meaning of the fields then deteriorates, because now it
represents information other than its original specification. This ad hoc solution works
as long as all the trading partners are aware of the tweaks.

The concept of EDI is a good one. However, its implementation of a rigid document set
sent over a proprietary network infrastructure - and expensive translator software for
back-office integration - tends to inhibit the participation of new players in the world of
electronic commerce. The XML technology opens the door for companies that didn't
have the opportunity to participate in EDI in the past.

[3,13,14]
3.2 XML and Industry Standards

Many major forces, such as RosettaNet, CommerceNet and OAG (Open Applications
Group), are alsotrying to leverage the extensibility nature of XML to fill the grammar
and vocabulary gap. These are organizations with big players that are undertaking the
daunting task of specifying the business dictionary using XML. Within these
organizations you'll find EDI standard bodies such as ANSI ASC X.12 and UCC
(Uniform Code Council). New XML schemas are being created every day, which creates
a new problem. Which definition should I use? Which dialect should | speak?

To tackle part of this problem, organizations such as Microsoft's Biztalk.org and
OASIS's XML.org are taking shape. Their purpose is to act as a clearinghouse for XML
documents by soliciting business partners to collectively create a vocabulary repository.
Different XML schemas are published in these clearinghouses for others to consume
and use. They represent a hub for the business community of business dictionaries
specified in XML.

The EDI experience has taught the electronic-commerce community about the need to
customize and extend. An order document in the auto industry will be different from
one in the electronic industry. The health-care industry will have business processes
substantially different from processes in the retail industry. Each vertical industry will
demand its own set of business documents. A horizontal process, such as order entry,
will be different for each industry, resulting in different business documents to be
transacted. The combination of the expressive power of XML and the development of
big organizations to produce common business dictionaries is finally beginning to
bridge the gap of our communication stack.

[14]
3.3 XML Repositories and Registers

XML provides a standard for defining data formats for transportation across the Web.
XML data format types are expressed in the form of XML schemas. An XML schema is
a document that describes a set of XML document instances. In that sense it's like an
XML document template. The only way that enterprises will agree on common schemas
is if there's a shared resource that makes the same schema available to multiple
organizations. Such resources should be governed by industry consortia so that multiple
organizations can be represented and the acceptance criteria can be as unbiased as
possible.

However, shared resources need careful management. As different industry verticals
define unique schemas for exchanging XML-based information, the proprietary nature
of these schemas will lead to a lack of portability across different e-business
environments. There will also be an explosion in the number of redundant schemas that
will emerge to express the same type of data. There is a growing need in e-businesses
for compatible processes and vocabularies to reduce this redundancy and the consequent
complexity. For industries to exchange data using XML across multiple enterprises,

standard repositories are needed for sharing vocabularies. These repositories serve as
data stores for DTDs and schemas, XML-based directory mechanisms, database
structures, UML modeling tools, glossaries for relationships, context-specific terms and
so on. These repositories are usually owned by consortia of industry verticals that hash
out things like the meaning of an "SKU" or the elements of an "invoice." Repositories
will eventually contain standardized business components, tags, and industry terms and
definitions.

XML registries, like repositories, contain common information for industries. However,
they're mainly stores for XML schemas and DTDs. The idea behind registries is that
different industry representatives can submit XML schemas. Later, when some other
party is looking for a similar schema, they should be able to find one they can use
directly or extend. This is an excellent example of the power of the "X" in XML, which
stands for "extensible." Currently the XML industry has two main organizations that
offer registries for XML schemas - the BizTalk registry from Microsoft and the
XML.ORG Registry from OASIS, a consortium that consists of several organizations.
The registry was formed with resources donated by Sun, IBM, Oracle, Documentum and
DataChannel. It seems that the XML schemas will be split across two camps again -
Microsoft and the rest of the world. At the same time other XML repositories and
registries are appearing on the horizon. Obvious problems of redundancy and
complexity will have to be resolved between these registries.

Organizations access XML repositories through an open application program interface
or API. This API will allow automated or manual queries from organizations needing to
exchange data with trading partners. Organizations download the package of XML-
enabled objects (document-type definitions, tag sets, style sheets, processing routines,
product identifiers, etc.) needed to do business with others in this industry.
Organizations can then exchange XML data that feed directly into their business
systems and those of their trading partners. Repositories can also provide a temporary
holding bin for data used in collaborative problem solving

Figure below shows a schematic of the role of repositories in the context of XML/EDI -
business information exchanges using XML as the syntax.

Organization | E : 2 Transaction Organization 2

XML

Repository

Figure 1: XML/EDI transaction

In Step 1, a user or software process in Organization 1 queries the global repository for
those common business objects to be passed to trading partners such as Organization 2.
In step 2, references to the identified business objects are exchanged as part of the set up
process for the transaction by the trading partners. In step 3, the references are used to
map received data into the organization's application system. The intent of the global
repository is to be a dynamic mechanism that responds through an open API.

[1,3,15]
3.4 Repositories’ role

XML repositories provide an online source to acquire the appropriate tag templates,
document-type definitions (DTDs), database schema, software code or routines, and
other objects needed to conduct electronic commerce using XML. As a result,
organizations, particular smaller enterprises, can quickly develop or expand their ability
to conduct electronic commerce.

EDI requires trading partners to map their business data to the formats of the
transmission standards, an often difficult and time-consuming process. As mentioned
before, EDI often requires using expensive translator software and networks that charge
according to transmission volumes. XML repositories, on the other hand, provide the
means to exchange business data with a much smaller financial investment by:
= Extending the reach of electronic business well beyond the simple exchange of
electronic documents to include the mapping and processing of data directly into
the organizations business systems
= Covering a wider range of interactions among trading partners, such as real-time
exchanges, that often do not fall cleanly into the normal definition of business
transactions
= Using the Internet, with appropriate security, which offers a more economical
means of transmitting data than traditional value-added networks
= Taking advantage of the next generation of XML-enabled applications software
that can interact directly with the transmitted data from trading partners,
circumventing the difficult mapping process

Applying the capabilities provided by such an XML repository makes it possible to
create and deploy business applications that can support the needs of many thousands of
trading partners. This ‘self service’ approach, allowing many users to share the
development efforts, is the key to scalability compared to traditional EDI
implementations.

The single biggest role for XML repositories is taming semantic dispersal brought about
by the explosion in electronic information systems over the last 25 years. Early EDI
systems avoided this problem simply because the number and range of installed systems
was relatively low. At this stage the use of fixed structure transactions that trading
partners had to adhere to limited the scope for dispersion. As the numbers of parties
involved in EDI increased efforts were made to combine the existing message structures
into a set of shared semantics, at first at national level (e.g. the ANSI X12 effort) and

then internationally (e.g. the UN/EDIFACT work). Compromises had to be made as part
of this coming together, with the result that many of the components of today's EDI
messages are overloaded with conflicting sets of semantics.

[1,3,13]

4 AVAILABLE SOFTWARE TOOLS

The number of products for using XML with databases is growing with amazing speed -
- new products seem to enter the market weekly. It is obvious that XML is approved
well among developers and there is a need for XML database applications and
repositories, but what kind of applications are present and used nowadays? Answer for
that question is tried to met by taking a glance of two products below; one XML
Database product and one XML Repository, Oracles ’heavy duty’ database Oracle 8i
and Microsoft’s BizTalk framework.

4.1 Oracle8i Database

If the key requirement is to be able to efficiently read and write XML to and from the
database, developers should look hard at Oracle8i. Designed from the ground up to be
the database for the Internet, it includes native support for Internet standards such as
Java and XML. In fact, at the heart of the Oracle8i database is a highly scalable Java
engine tuned for server-side Java application development, giving Java the ability to
scale to thousands of heavy-duty concurrent connections. In addition, Oracle's XML
capabilities are so much a part of the database that Oracle8i can run its XML
components for Java completely within the database to deliver the scalability required
by today's Internet applications.

Oracle 8i can store XML documents in three different ways: in the Internet File System
(iFS), using the XML SQL Utility for Java, and as a BLOB that can be searched using
the Oracle Intermedia XML Search. Oracle 8i also includes a number of other XML-
related tools, the most interesting of which is the XML Class Generator, which Can
generate Java classes from a DTD.

With iFS, one or more type definition (mapping) files defines how to map an XML
document as a tree of data-specific objects. IFS uses these mapping files both to
construct tables in which the XML document can be stored, and to transfer data between
XML documents and the database. Of interest, iFS can return data from the database
directly as objects instead of XML documents, which is useful to many applications. iFS
also supports content management features such as check-in/check-out and versioning.

The XML SQL Utility for Java used with Oracle 8i, it models XML documents as a tree
of data-specific objects, since Oracle 8i supports SQL 3 object views.

Oracle Intermedia XML Search is a utility that can, "Automatically index and search
XML Documents and Document Fragments of any size up to 4 Gigabytes each. [It has]
powerful XML document searching including hierarchical element containership,
doctype discrimination, and searching on XML attributes."

10

Oracle 9i (announced 2 Oct, 2000) includes "Native XML Database Support (XDB)",
which introduces a new object data type (XMLType) and "features ... 'navigational’
access and search for XML documents."

4.1.1 Additional XML features in oracle 8i

= XML-Enabled Object Views Over Relational Data": Object Views allow information
in relational tables to be materialized on the fly as a richly-structured XML views of
any information in the database. ... XML information can be easily inserted into the
database through the Object Views.

= The XML SQL Utility (XSU) provides the user with the following functionality:

= Generate an XML document (string or DOM) given a SQL query or a JDBC
ResultSet object.
= Extract the data from an XML document, then insert the data into a DB table,
update a DB table, or delete corresponding data from a DB table.

= Oracle Intermedia XML Search': Automatically index and search XML Documents
and Document Fragments of any size up to 4 Gigabytes each. Powerful XML
document searching including hierarchical element containership, doctype
discrimination, and searching on XML attributes.

= Oracle8 JServer Java Virtual Machine': ... this fully-compliant Java 1.2 virtual
machine shares the memory address space of the data server. This allows mission-
critical, data-intensive Java and XML-processing code to run with in-memory data
access speeds using standard JDBC interfaces. ...

= Oracle XML Developer's Kit": The Oracle XDK contains the basic building blocks
for reading, manipulating, transforming, and viewing XML documents. ... The
Oracle XDK consists of the following items: XML Parsers, XSL Transformation
Engine, XML Class Generator, XML Transviewer Java Beans, XML SQL Utilities,
XSQL Page Processor and Servlet, JDeveloper, and Business Components for Java."”

[6,7,8,9,10,11,18]
4.2 BizTalk Schema Repository

BizTalk has been developed by Microsoft and is supported by many organizations.
These are technology vendors such as SAP, through to technology users like Boeing.
BizTalk is not a standards body. Instead, it is a community of standards users, with the
goal of driving the rapid, consistent adoption of XML to enable electronic commerce
and application integration.

Microsoft has taken ’the race of the repositories’ seriously. It has to offer three concepts
to XML application designers; the BizTalk repository, the BizTalk Schema framework
and the BizTalk Server. Microsoft will natively support the BizTalk Framework in its
product line and will publish XML schemas to the BizTalk Framework Web site for
public use. Other software vendors supporting the BizTalk Framework have also made
this commitment.

Microsoft has claimed that more than 150 member organizations participate in BizTalk
and more than 500 schemas have been published to BizTalk.org.

11

4.2.1 The BizTalk Framework

The BizTalk Framework is an Extensible Markup Language (XML) framework for
application integration and electronic commerce. It includes a design framework for
implementing an XML schema and a set of XML tags used in messages sent between
applications. Microsoft Corp., other software companies and industry standards bodies
will use the BizTalk Framework to produce XML schemas in a consistent manner.

The BizTalk Framework itself is not a standard. XML is the standard. The goal of the
BizTalk Framework is to accelerate the rapid adoption of XML. BizTalk Framework
schemas — business documents and messages expressed in XML — will be registered
and stored on the BizTalk.Org Web site. Any individual or organization can download
the framework and use it to implement and submit XML schemas to the Web site. As
long as the schemas pass a verification test, they are valid BizTalk Framework schemas.
The BizTalk.Org Web site will provide an automated submission and validation
process. Individuals or organizations can freely use XML schemas from the BizTalk.Org
Web site within their applications, as long as the schema is published for public use.

Businesses will also have the option of publishing their schemas on the BizTalk.Org
Web site in a secure area for private use between trading partners. A steering committee
composed of software companies, end users and industry standards bodies will provide
guidance on how the BizTalk.Org Web site is organized and managed.

[4,5,12]

5 CONCLUSION

While XML has evolved from SGML and HTML, its impact will not be evolutionaryit
will be revolutionary! XML will transform the Internet from a massive collection of
unmanageable data into the intelligent transport we have all been waiting for. The
development community is just beginning to recognize the far-reaching benefits of
XML as a standard, flexible, structured content format. Existing XML DTDs such as
CDF, for push channel management, and OSD, for on-line software distribution, merely
hint at the types of applications that will benefit from XML’s unique characteristics.

While XML’s impact is revolutionary the thing where we should be looking at is how to
make use of it. XML Repositories together with suitable, efficient and reliable
databases, are the way of making that happen. Repositories are the solution for efficient
handling, creating and maintaining of business standards and that seems to be the
direction companies are heading. But it is not happening fast. The biggest slowing factor
for the growth of this XML-based information ’society’ is the current databases
containing the data along with current procedures companies are having in their
business’s. Questions relevant are: will companies give effort to change their systems?
What will they benefit if they do?

In the age of the Internet, XML offers an opportunity to rethink the implementation of
EDI but it can't replace it by itself. The standard business dictionaries stemming from
standard organizations are crucial to the success of business-to-business
communications. The extensibility of XML will ease the traditional EDI pain of being

12

too rigid in definition. The pace of competition is extreme and this means businesses
need to be as agile as ever. This competitive environment forces businesses to change
and upgrade their processes frequently. These changes in processes may lead to changes
in messages. How well will XML, along with the armies of standard bodies, keep pace?
Only time will tell.

Traditional EDI is now being by-passed by events and the Internet. However the
Internet, which has no inbuilt semantics other than those required for the presentation of
data, has in turn become overloaded with information. XML is seen as the solution to
this problem by allowing semantics to be associated with data being transmitted over the
Internet. XML by itself is merely a syntax and a tool. It will not of itself allow the
adoption of standardized sets of semantics. XML Repositories are there to tame the
semantic dispersal.

REFERENCES

[1] White Paper on Global XML Repositories for XML/EDI (The XML/EDI
Group Feb, 1999)
http://www.xmledi-group.org/xmledigroup/repository/RepWPv1.PDF
Ref. 25.10.2000

[2] The Role of Document Type Definitions in Electronic Data Interchange
(Martin Bryan, The SGML Centre)
http://www.sgml.u-net.com/xml-edi/edi-dtds.htm
Ref. 25.10.2000

[3] XML/EDI Repositories, Q&A
http://www.xmledi-group.org/xmledigroup/repository/Rep-Q&A.htm
Ref. 25.10.2000

[4] BizTalk Framework 2.0 Draft: Document and Message Specification
(Microsoft Corporation, June 2000)
http://msdn.microsoft.com/xml/articles/biztalk/biztalkfwv2draft.asp
Ref. 23.11.2000

[5] BizTalk Framework
http://www.biztalk.org/Biztalk/framework.asp
Ref. 23.11.2000

[6] Product info & articles (Oracle Corporation, 2000)
http://www.oracle.com/ip/deploy/database/8i/index.html?ee.html
Ref. 23.11.2000

[7] Oracle XML SQL Utility — XSU (Oracle Corporation, 2000)
http://technet.oracle.com/tech/xml/oracle_xsu/
Ref. 23.11.2000

[8] Using XML in Oracle Database Applications (Oracle Corporation, 2000)
http://technet.oracle.com/tech/xml/info/index2.htm?Info&htdocs/otnwp/

13

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

about_xml.htm
Ref. 23.11.2000

Using XML in Oracle Database Applications (Oracle Corporation, 2000)
http://technet.oracle.com/tech/xml/info/index2.htm?Info&htdocs/otnwp/
about_oracle_xml_products.htm

Ref. 23.11.2000

Using XML and Relational Databases for Internet Applications (Steve Muench,
Consulting Product Manager & XML Evangelist, Oracle Corporation)
http://technet.oracle.com/tech/xml/info/htdocs/relational/index.htm#1D795

Ref. 23.11.2000

XML Support in Oracle8i and Beyond (an Oracle Technical Whitepaper
November 9, 1998, Oracle Corporation)
http://technet.oracle.com/tech/xml/info/index2.htm?Info&htdocs/xml_twp.html
Ref. 23.11.2000

-Schema repositories

Schema Repositories What's at stake (Liora Alschuler, Jan. 26, 2000)
http://www.xml.com/pub/2000/01/26/feature/index.html

Ref. 25.10.2000

-XML/EDI

Guidelines for using XML for Electronic Data Interchange, Version 0.05 (25th
January, 1998, Editor: Martin Bryan, The SGML Centre)
http://www.geocities.com/WallStreet/Floor/5815/guide.htm

Ref. 25.10.2000

XML: The Next Generation EDI? (Kang Lu, SYS-CON Publications, Inc 2000)
http://www.sys-con.com/java/xml/lu/
Ref. 25.10.2000, Registration required

Registering XML (Ajit Sagar, SYS-CON Publications, Inc 2000)
http://www.sys-con.com/xml/archives
Ref. 25.10.2000, Registration required

XML: The Foundation for the Future (By Mike Hogan, POET Software, A
Sponsor Member of OASIS)
http://www.oasis-open.org/html/xml_foundation_future.html

Ref. 25.10.2000

XML and Databases (Copyright 1999, 2000 by Ronald Bourret September,
1999, Last updated November 2000)
http://www.rpbourret.com/xml/XMLAndDatabases.htm

Ref. 23.11.2000

XML Database Products (Copyright 1999, 2000 by Ronald Bourret September,
1999, Last updated November 2000)

14

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
Ref. 23.11.2000

15

	INTRODUCTION AND OVERVIEW
	DATABASE FOR XML DATA
	database/Repository Requirements
	Comparing Database Types
	File System Storage of XML Data
	Relational Database Storage of XML Data
	Object Database Storage of XML Data
	The Ideal Repository for XML Data

	Conclusion

	REPOSITORIES
	The Role of Edi
	XML and Industry Standards
	XML Repositories and Registers
	Repositories’ role

	AVAILABLE SOFTWARE TOOLS
	Oracle8i Database
	Additional XML features in oracle 8i

	BizTalk Schema Repository
	The BizTalk Framework

	CONCLUSION
	REFERENCES

