
HELSINKI UNIVERSITY OF TECHNOLOGY 04.12.2000
Telecommunications Software and Multimedia Laboratory
Tik-111.590 Research Seminar on Digital Media
Fall 2000: XML

XML Schema

Jarkko Ansamaa

42840S

1

XML Schema

Jarkko Ansamaa
Helsinki University Of Technology

jansamaa@cc.hut.fi

Abstract

This paper describes the concepts of XML Schema or Xschema as mentioned
in some resources. The Extensible Markup Language (XML) is a format for
structured data as specified by The World Wide Web Consortium (W3C).
XML Schema is a model for describing the structure of information in an
XML document. Schemas specify the possible arrangement of tags and text
(structure), possible values of the information elements (data-types) and
allow support for namespaces, attribute grouping and inheritance. If the
structure of a given XML document confirms to given schema it is said to be
valid in context of that particular schema. Applications exchanging a class
of XML documents use Schema as an agreement on common vocabulary;
the validity of the documents is easy to verify using automated tools. This
paper lists a short introduction to XML Schema concept, gives a general
view on main characteristics and shows some technical definitions of the
Schema language with a few examples. This paper was written for the
Helsinki University of Technology course "Tik-111.590, Research Seminar
on Digital Media".

1 INTRODUCTION

XML is a mark-up language that is used for describing structured data. The basis of
the logical structure of a XML document consists of document declaration followed by
elements and their attributes. Each element has a name and they are declared by start
and end tag. Element’s content resides between the tags and may consist of other
elements, data or be empty. Each element may have attributes that consist of name and
value. XML enables users to introduce elements and attributes, their names and their
relations in the document. To be XML, documents only have to conform to the XML
syntax.

The XML document’s meaning has still be understood. An arbitrary structure with
arbitrary named elements and attributes does not really tell what the document is all
about. For this the XML document declaration may point or contain mark-up declaration
that provides the grammar for a class of document. This grammar specifies the structure
of the document by defining the attributes and elements and their hierarchy and
granularity. It enables the common vocabulary to be agreed on and to be used for
specialised domains. One could design new mark-up languages for mathematics,

2

astronomy or just for simple forms or for any purpose imagined. The grammar may then
be shared with others in that domain. By agreeing to that, a group of people has accepted
a set of rules about document vocabulary and structure.

All the above leads to two basic qualities of XML documents. Document can be well-
formed and valid. Well-formed document is a document where the XML syntax is
correct. Technically it also means that a XML parser is capable or processing the XML
document. Valid XML document is a well-formed document that structure of
information (tags, elements, attributes) conforms to the defined grammar. Documents
that conform the defined grammar are said to be instance documents of that grammar.

The concept of valid XML document has many other advantages. Validation ensures
that the information is structured in a way that is sensible for applications that use it.
Before applications use the information on a XML document, a XML parser evaluates
the document. Most of the parsers also validate XML documents automatically. This is a
considerable function since most applications use a lot of processor time just for
checking the validity of their input data or coping the consequences of corrupted data.
For example company A receiving XML data from company B may automatically check
the data before entering it into their systems avoiding the corruption of their databases.
Applications producing XML documents can also use validation so that they check the
data before sending it further. XML editing applications can use these as frameworks,
letting users create documents that conform to the grammar.

The original way for describing the grammar of a XML document is called Document
Type Declaration (DTD). It was defined by XML 1.0 recommendation.

2 DOCUMENT TYPE DECLARATION

Document Type Declaration (DTD) declares the grammar for a class of XML
documents. DTD can point to an external or internal subset. Internal subset means that
XML document embeds the DTD. External subset means that XML document points to
an external DTD. XML document may have both the internal and external subset where
the internal is processed before the external.

DTD has its own syntax. Syntax defines elements and attributes. Elements may
consist of child elements and of character data. Elements may be optional, appear zero
or multiple or one or multiple times, they may follow each other or be alternatives to
each other. Attributes may for example be unique, have list of accepted values or default
value and so on.

The following example defines an address book that consists of zero or more
persons. Each person has either nickname or full name. Full name consists of first name,
middle name and last name where middle name is optional. Each person also has one or
more email addresses and phone numbers. An attribute is used to identify whether the
person is a friend or work associate. Friend is the default value. As an external
document type definition this could look like:

<!ELEMENT addressbook (person)* >
<!ELEMENT person ((nickname | fullname), email+, phonenumber+)>

3

<!ATTLIST person
 category (friend |work) “friend” >
<!ELEMENT fullname (givenname, middlename?, familyname)>
<!ELEMENT givenname (#PCDATA)>
<!ELEMENT middlename (#PCDATA)>
<!ELEMENT familyname (#PCDATA)>
<!ELEMENT nickname (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phonenumber (#PCDATA)>

If this document type definition were named addressbook.dtd the following XML
document that includes the information of two persons would be a valid address book:

<?xml version="1.0"?>
<!DOCTYPE addressbook SYSTEM "book.dtd" >
<addressbook>
 <person category=”friend”>
 <nickname>Tommy</nickname>
 <email>tom.jones@home.com</email>
 <email>tom.jones@work.com</email>
 <phonenumber>0501234567</phonenumber>
 </person>
 <person category=”work”>
 <givenname>Susan</givenname>
 <familyname>Smith</familyname>
 <email>susan.smith@company.com</email>
 <phonenumber>0507654321</phonenumber>
 </person>
</addressbook>

With this simple example it is easy to point out some limitations on DTD. Firstly the
elements in the document must be exactly in the defined order. Secondly lets assume
that we would like to restrict the element phonenumber only to contain digits and the
element email to have the @ character surrounded by other characters. DTD lacks the
concept of strong data typing so this is impossible. Thirdly to restrict that a person may
have for example a maximum of five email addresses is not possible.

The combined list of most of the limitations include:

• DTD has different syntax than XML which is inconsistent
• DTD has very limited data type support
• Expressing complex structures is limited
• No support for XML namespaces

Due the limitations the World Wide Web Consortium (W3C) started to work on new
model for describing the structure of XML documents. This work resulted to the
specification of XML Schema.

3 XML SCHEMA

3.1 General

Like DTD, XML schema describes a model for a whole class of documents. The
model describes the possible arrangement of tags and text in a valid document. A

4

schema might also be viewed as an agreement on a common vocabulary for a particular
application that involves exchanging documents. The XML Schema specification is
written in three parts:

• XML Schema Part 0: Primer is an introduction to XML Schemas with examples.
• XML Schema Part 1: Structures specifies the XML Schema definition language

for describing the structure and constraining the contents of XML documents.
• XML Schema Part 2: Datatypes specifies a system of data categories for XML.

The first Working Draft of the specification was published in May 1999 at the end of
October 2000 the XML Schema language was given a Candidate Recommendation
status.

An instance document that is valid against schema is schema-valid. Schema
processor(s) performs the validation. XML Schema itself is well-formed XML. Schemas
are valid to Schema DTD.

3.2 New Features and Improvements

XML Schema offers a range of improvements compared to DTD:

• The syntax is written in XML allowing the use of XML tools like XML editors
• Many in-built datatypes like booleans, numbers, different types of dates and

times, URIs, integers, decimal numbers, real numbers, intervals of time, etc.
• User may define almost any kind of own datatypes
• Inheritance allows types to be derived from other types by extension or

restriction
• Element contents may be unique within the whole document or just region
• Set expression allows element’s child elements occur in any order
• Support for XML namespaces
• Regular expressions
• Documentation mechanism

In overall, XML Schema is very powerful in XML document modelling.

3.3 Basic features of XML Schema

XML Schema is written in XML. The whole schema definition is inside a schema
element, which is associated with XML Schema namespace. This namespace identifies
element and attribute names such as built-in data types to belong to the vocabulary of
the XML Schema language. Schema element has a number of child elements. The most
common child elements are element, complexType and simpleType that determine
the appearance of elements and their content in instance documents. Attributes in
instance documents are declared using attribute element.

Let’s use the address book example introduced earlier in chapter 2. The Schema for
an address book could look like the following:

<?xml version ="1.0"?>

5

<!--Generated by XML Authority. Conforms to w3c
http://www.w3.org/1999/XMLSchema-->
<schema xmlns="http://www.w3.org/1999/XMLSchema">
 <element name="addressbook">
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element ref="person"/>
 </sequence>
 </complexType>
 </element>

 <element name="person">
 <complexType>
 <sequence>
 <choice>
 <element ref="nickname"/>
 <element ref="fullname"/>
 </choice>
 <element ref="email" minOccurs="1" maxOccurs="unbounded"/>
 <element ref="phonenumber" minOccurs="1"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="category" use="default" value="friend">
 <simpleType base="ENUMERATION">
 <enumeration value="friend"/>
 <enumeration value="work"/>
 </simpleType>
 </attribute>
 </complexType>
 </element>

 <element name="fullname">
 <complexType>
 <sequence>
 <element ref="givenname"/>
 <element ref="middlename" minOccurs="0" maxOccurs="1"/>
 <element ref="familyname"/>
 </sequence>
 </complexType>
 </element>

 <element name="givenname" type="string"/>
 <element name="middlename" type="string"/>
 <element name="familyname" type="string"/>
 <element name="email" type="string"/>
 <element name="phonenumber" type="string"/>
 <element name="nickname" type="string"/>
</schema>

The schema above declares one structure level at the time. It includes references to
elements on the next structure level. The final elements are all declared global which
means that they appear the on next level from the schema element. This is one way
of writing a schema.

3.3.1 Elements

Schema element element declares an element in the document instance. For
example

<element name="middlename" type="string"/>

declares an element middlename which content is of built-in type string. Since

6

middlename is now defined there it can be referenced:

 <element ref="middlename" minOccurs="0" maxOccurs="1"/>

By reference we avoid defining a repeatable item again. In general the ref attribute
must point to global element which is declared as a child of schema element.

By default, elements occur once in the instance document. Using minOccurs and
maxOccurs attributes we can restrict the occurrence of an element to any
combination. In the above middlename may occur once or not at all.

In our addressbook example above the referencing has no advantage since the
elements are used only once. Now we can reduce our definition by taking the
references out.

<?xml version ="1.0"?>
<schema xmlns="http://www.w3.org/1999/XMLSchema">
 <element name="addressbook">
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element name="person">
 <complexType>
 <sequence>
 <choice>
 <element name="nickname" type="string"/>
 <element name="fullname">
 <complexType>
 <sequence>
 <element name="givenname" type="string"/>
 <element name="middlename" type="string"
minOccurs="0" maxOccurs="1"/>
 <element name="familyname" type="string"/>
 </sequence>
 </complexType>
 </element>
 </choice>
 <element name="email" type="string" minOccurs="1"
maxOccurs="unbounded"/>
 <element name="phonenumber" type="string" minOccurs="1"
maxOccurs="unbounded"/>
 </sequence>
 <attribute name="category" use="default" value="friend">
 <simpleType base="ENUMERATION">
 <enumeration value="friend"/>
 <enumeration value="work"/>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>

3.3.2 Attributes

Attributes are defined as attribute elements. In our example

7

<attribute name="category" use="default" value="friend">
 <simpleType base="ENUMERATION">
 <enumeration value="friend"/>
 <enumeration value="work"/>
 </simpleType>
</attribute>

declares an attribute name category which default value is friend and possible
values are friend and work. There are also means of declaring an optional
attribute and fix its value.

3.3.3 Built-in and User Definable Simple Types

Simple types are either built-in types or user definable types. These can be used in
attributes as well as elements. In our example a user definable simple type is declared by
simpleType element for an attribute:

<attribute name="category" use="default" value="friend">
 <simpleType base="ENUMERATION">
 <enumeration value="friend"/>
 <enumeration value="work"/>
 </simpleType>
</attribute>

Simple types can also be declared by inheritance where a built-in type is used as a
base and then some constraint is applied to it. A simple example of defining a number
those minimum is 10000 and maximum 99999:

<simpleType name="myInteger">
 <restriction base="integer">
 <minInclusive value="10000"/>
 <maxInclusive value="99999"/>
 </restriction>
</simpleType>

Some examples of built-in types are: boolean, string, integer, positiveInteger,
negativeInteger, decimal, double, date, time, year, century.

3.3.4 Complex Types

Complex types typically contain a set of element declarations, element references, and
attribute declarations. They can be used for defining a reoccurring complex structure
that is often referenced. Example:

<element name="PostDelivery" >
 <complexType>
 <element name="sender" type="Address" />
 <element name="reciever" type="Address" />
 </complexType>
</element>

<complexType name="Address" >
 <sequence>
 <element name="name" type="string" />
 <element name="street" type="string" />
 <element name="city" type="string" />
 <element name="postcode" type="string" />

8

 </sequence>
 <attribute name="customerCode" type="integer"
</complexType>

3.3.5 User Definable Datatypes and Regular Expressions

Let’s set some new constraints to our address book example. We want to define that
email is a string where @ character is surrounded by other characters and that
phonenumber consist of at least six digits. For this we can use regular expressions and
define new datatypes:

<simpleType name="emailAddress">
 <restriction base="string">
 <pattern value=".+@.+"/>
 </restriction>
</simpleType>

<simpleType name="phonenumber">
 <restriction base="string">
 <pattern value="[0-9]{6,}"/>
 </restriction>
</simpleType>

Then we can simply use these new types using type attribute:

<element name="phonenumber" type="phonenumber"/>

3.3.6 Other

The main features in XML Schema were shortly introduced with a simple example
above. Still there is a lot more ways of expressing the document instances model. XML
Schema has 36 different element names which all are structure or datatype related. Apart
from that there are 31 different attributes which are used in the elements. Schemas are
not only a comprehensive modelling tool but also a rich language where the same kind
of results may be achieved in different ways.

3.4 XML Namespaces and Schemas

The purpose of namespaces is to guarantee unique names for elements and attributes
that may be declared in various separate document models like DTDs and schemas. A
namespace is a collection of names that are identified by URI reference. XML
Namespace technology is used in various cases with XML Schema. The most important
are declaring target namespaces and dividing Schemas in multiple documents.

3.4.1 Target Namespaces

A schema can be viewed as a collection of type definitions and element declarations
whose names belong to a particular namespace called a target namespace. All the
schemas use names XML Schema namespace, which is often called “schema for
schemas”. These include the keywords like simpleType, element or integer. Let’s
put our definition for an email address to a schema and create a namespace for it:

9

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/1999/XMLSchema"

targetNamespace="http://www.example.org/Email">

 <simpleType name="email">
 <restriction base="string">
 <pattern value=".+@.+"/>
 </restriction>
 </simpleType>
</schema>

Now the target namespace is declared using targetNamespace attribute and an
instance document may reference it using the namespace technology.

3.4.2 Dividing Schema in Multiple Documents

A schema may be divided in several documents. Let’s assume the email address type
is defined as in previous chapter in file email.xsd. Now we create a simple schema
for a list of email addresses that uses the address type already defined in another
document:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/1999/XMLSchema"

xmlns:addr="http://www.example.org/Email"
targetNamespace="http://www.example.org/Email">

 <include schemaLocation="http://www.example.org/schemas/email.xsd"/>

 <element name="emailAddressList">
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element name="email" type="addr:email"/>
 </sequence>
 </complexType>
 </element>
</schema>

In the above, the include element imported the contents of the email.xsd to the
schema from address http://www.example.org/schemas/email.xsd. The reference
addr to namespace http://www.example.org/Email was used when defining the
type of element email. This is needed for implying that the type email is not part of
the default namespace but a part of the namespace we created in the previous chapter. If
include is used the all of the schemas must have the same target namespace. If schemas
have different namespaces the importing may be performed using import element.

3.5 Processing an Instance Document against a Schema

An instance document may be processed against a schema to verify whether the
instance conforms the rules specified in the schema. This is performed by a schema
processor. The processing actually does two things. It checks instance against the
schema rules to see if the instance is schema-valid. It may also add supplementary
information to the instance like types and default values.

The author of an instance document may provide the location of the schema by using
XML Schema instance namespace and schemaLocation attribute. Usually a schema has
a target namespace. The schemaLocation attribute has two values. The first is the

10

namespace of the schema and the second the locations of the schema document. If the
schema does not have a target namespace attribute noNamespaceSchemaLocation is
used.

In the following example we have a schema describing a list of email addresses:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/1999/XMLSchema"

targetNamespace="http://www.example.org/Email">

 <element name="emailAddressList">
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element name="email">
 <simpleType>
 <restriction base="string">
 <pattern value=".+@.+"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>

The following XML document points to the schema above thus is valid against it:

<?xml version="1.0"?>
<emailAddressList
 xmlns="http://www.example.org/Email"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xsi:schemaLocation="http://www.example.org/Email"
 "http://www.example.org/schemas/email.xsd">

 <email>joe.dalton@example.com</email>
 <email>jack.dalton@example.com</email>
 <email>william.dalton@example.com</email>
 <email>awerell.dalton@example.com</email>
 <email>lucky.luke@example.com</email>
</emailAddressList>

Note however the schema processor is not obliged to use a schema that is provided in
the instance document. In fact the processor is free to use other schemas obtained by any
suitable means, or to use no schema at all. For example, an HTML editor may have a
built-in HTML schema.

4 CONCLUSIONS

XML Schema is a powerful language for describing the vocabulary of a XML
document. The language has a number of features that can be used for declaring almost
any kind of XML data structures and datatypes. While the advantaged features require a
good knowledge of the XML technologies like namespaces and the language itself, the
basics are quite easy to learn and deploy.

The XML Schema technology is already an important part of XML. The need for

11

sharing domain specific vocabulary and the range of applications sharing XML data
itself requires a common description language. Common vocabulary helps communities
to have an unique agreement on the subject in question. Applications exchanging XML
documents do not have to worry about receiving or sending invalid data. Schema-
validity works as a “spell checker” for users creating XML documents. Because of these
it is foreseen that the XML Schema will have an even more essential role in the future.

REFERENCES

[1] Goossens, M. 2000. XML, a new start for the Web. Academic Training, May 2000.
URL: http://goossens.home.cern.ch/goossens/xml2000.pdf

[2] Fallside, D. C. (Editor), 2000, XML Schema Part 0: Primer, W3C Candidate
Recommendation, October 2000. URL: http://www.w3.org/TR/xmlschema-0/

[3] Beech, D. Maloney, M. Mendelsohn N. Thompson, H. S. (Editors), 2000, XML
Schema Part 1: Structures, W3C Candidate Recommendation, October 2000. URL:
http://www.w3.org/TR/xmlschema-1/

[4] Paul V. Biron, P. Malhotra, A. (Editors), 2000, XML Schema Part 2: Datatypes,
W3C Candidate Recommendation, October 2000.URL:
http://www.w3.org/TR/xmlschema-2/

http://goossens.home.cern.ch/goossens/xml2000.pdf
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

	INTRODUCTION
	DOCUMENT TYPE DECLARATION
	XML SCHEMA
	General
	New Features and Improvements
	Basic features of XML Schema
	Elements
	Attributes
	Built-in and User Definable Simple Types
	Complex Types
	User Definable Datatypes and Regular Expressions
	Other

	XML Namespaces and Schemas
	Target Namespaces
	Dividing Schema in Multiple Documents

	Processing an Instance Document against a Schema

	CONCLUSIONS

