VoiceXML

Matti Airas

November 29, 2000

Contents
1 Introduction
2 Architectural Model of VoiceXML

3 VoiceXML Language Overview

3.1 Application
3.2 SesSionso i e e
3.3 Dialogs and Subdialogs oL,
34 Forms
341 FormItems
3.5 Variables
3.6 Grammars e e e e e e e e e e e
3.6.1 Speech Grammars
3.6.2 DTMF Grammars
3.7 Eventhandling
3.71 Event Types
3.7.2 Throwing and catching events
3.8 Prompts
3.9 Executable Content

4 Example Implementation Platforms

4.1 IBM WebSphere Voice Server
4.2 New Lucent Speech Server
4.3 Motorola Internet Exchange,
4.4 Voice Application Portals
5 Related Technologies
5.1 WML e e
5.2 Java API Speech Markup Language
5.3 Java API Speech Grammar Format
54 TalkML e

6 Conclusions

1 Introduction

VoiceXML is an XML-based language designed for creating audio dialogs that
feature synthesized speech, digitized audio, recognition of spoken and DTMF
key input, recording of spoken input, telephony, and mixed-initiative conversa-
tions [10].

Today, voice applications are abundant, ranging from simple information
retrieval systems, e.g. weather services, to automated mail order and ticket
reservation systems. While widely used, the development systems are propri-
etary and re-implementation of applications using a system of different vendor
is costly. Even worse, the interaction model of the service may not match well
the established commodity systems.

The goal of XML is to make the well-established client-server architecture
of WWW applications available to interactive voice response applications. This
will make it easier to treat telephony applications as an alternative user interface
for ordinary WWW or mobile services. By defining the data and interaction
with XML, standard tools can be used, reducing product development time and
simplifying development.

2 Architectural Model of VoiceXML

The VoiceXML architecture is modeled to closely match that of a web service
client-server model. See figure 1 for an overview of the architectural model.
A document server, e.g. a web server acts as an architectural backbone, han-
dling requests from the VoiceXML interpreter and providing it documents. The
VoiceXML interpreter handles the user inputs together with VoiceXML inter-
preter context. The VoiceXML interpreter parses the actual VoiceXML doc-
uments and the state information encoded within, while the VoiceXML inter-
preter context responds to certain system-wide pre-defined events, e.g. special
escapes for reaching human operator, adjusting output volume or speech syn-
thesis characteristics.

The VoiceXML interpreter controls the implementation platform together
with VoiceXML interpreter context. The implementation platform is respon-
sible for the actual hardware interaction, text-to-speech synthesis and speech
recognition. The platform generates events according to user actions like spo-
ken or DTMF input, or disconnect. The events are then handled as defined in
the Voice XML document by the VoiceXML interpreter, or if the interaction is
not defined in the Voice XML interpreter, by the Voice XML interpreter context.

3 VoiceXML Language Overview

This section relies heavily on VoiceXML 1.0 specification document [10], and
if not otherwise mentioned, the information can be assumed to be taken from
there.

3.1 Application

An application is a set of documents which share the same application root
document. The application root document is loaded whenever the user enters

Document Server

l

VoiceXML Interpreter

Request Document

VoiceXxML
| nterpreter
Context

| mplementation Platform

Figure 1: VoiceXML Architecture

a document within the application. The root document remains loaded as long
as the user stays in that application.

‘While loaded, the variables defined in the application root document, appli-
cation variables are available to other documents within the same application.
The grammars of the root document can also be set to remain active throughout
the lifespan of the application.

3.2 Sessions

A session begins when a user begins to interact with the VoiceXML interpreter
context, continues as long as user interacts with the interpreter context and
ends when any of the parties requests it.

In real-world-terms, a session usually equals to a phone call or similar contact
with the computer running the VoiceXML server.

3.3 Dialogs and Subdialogs

Dialogs define an interaction between the user and the application, in which
data is collected from user input. The data can either be stored to variables
for further analysis (forms) or a transition to a new dialog may be performed
(menu).

Subdialogs are dialogs, into which a function call like transition can be made.
After completing the dialog, program execution is returned to the caller.

Subdialogs can be used to create a reusable library of dialogs that can be
shared throughout the application or even many applications.

3.4 Forms

Forms are key elements of VoiceXML documents. Forms define an interaction
with user, in which a prompt is played out and the response of the user is
interpreted according to given rules, the grammar. In addition to fields, forms
may as well have declarations of non-field item variables, event handlers and
“filled” actions, which are blocks of procedural logic that execute when certain
combinations of field items are filled in.

Forms are interpreted by an implicit form interpretation algorithm (FIA).
The form interpretation algorithm visits the first field item whose guard condi-
tion is not met. The default condition just tests whether the field variable is
set, thus making the fields to be prompted in order.

e selecting and playing out prompts

e receiving user input, either in response to the form, or a generic event (e.g.
“help”) and

e interpreting any met “filled” actions.
Below is an example of a simple form.

<form>
<field name="maincourse">
<prompt>Please select an entree. Today, we re featuring <enumerate/></prompt>
<option dtmf="1" value="fish"> swordfish </option>
<option dtmf="2" value="beef"> roast beef </option>
<option dtmf="3" value="chicken"> frog legs </option>
<filled>
<submit next="/cgi-bin/maincourse.cgi"
method="post" namelist="maincourse"/>
</filled>
</field>
</form>

3.4.1 Form Items

Form items are elements of form, which may be visited during the form inter-
pretation. They all have result variables, which are set when that item is filled.
The also have guard conditions, which control the entry to that item. Usually
the guard item just blocks entry if the field item variable is set. Form items
may be divided to field items and control items.

Field items define a field item variable that is set according to user input.
Field items have prompts that say what the user should say or key in, grammars
that define allowed inputs, and event handlers that process any resulting events.
Also “filled” elements which state an action to be taken after the field item
variable is set, may be defined.

Control items define either blocks of procedural statements used for prompt-
ing and computation, but not collecting input, or a block of initial interaction
with user in mixed initiative forms, which are used to ask the user for input
that matches the form level grammar.

Fields specify input items to be gathered from the user. Possible field values
may be defined by a built-in grammar, a user-defined grammar or by an option
list. Arbitrary field values, for instance an audio recording, are supported as
well.

Built-in grammars support entries of boolean (yes/no) values, dates, digits,
currencies, numbers, phone numbers and times.

Explicit grammars can be specified using URLs pointing to the grammar
document or as in-line. A simple grammar specification example follows.

<field name="flavor">

<prompt>What is your favorite flavor?</prompt>

<help>Say one of vanilla, chocolate, or strawberry.</help>

<grammar type="application/x-jsgf">

vanilla {van} | chocolate {choc} | strawberry {straw}

</grammar>

<dtmf type="application/x-jsgf"> 1 {van} | 2 {choc} | 3 {straw} </dtmf>
</field>

Mixed initiative forms are forms in which user may fill the whole form with-
out waiting for separate prompts. In these, the <initial> element is used to
instruct the user to enter information required in the form. In a typical mixed
initiative form, the following conversation might occur:

C: Welcome to the Driving Directions by Phone. Please say some-
thing like “from Atlanta Georgia to Toledo Ohio”.

P: Albuquerque to Seattle.
C: Please say something like “from Atlanta Georgia to Toledo Ohio”.
P: From Albuquerque to Seattle.

C: I'm sorry, I still don’t understand. From which city are you
leaving?

etc.

Control items include support for transferring the call to a third party, per-
forming actions when form item variables are filled, entering subdialogs or plat-
form specific extensions, entering metadata, and setting parameters for subdi-
alogs or platform objects.

3.5 Variables

VoiceXML variables are in all respects equivalent to ECMAScript variables.
The only difference is, variable names beginning with underscore are reserved
for internal use.

Variables are declared by <var> elements:

<var name="vegetable" expr="’cucumber’"/>
<var name='"phone"/>

They can also be declared by form items:

<field name="vegetables" type='"number">
<prompt>How many vegetables would you like?</prompt>
</field>

Depending on where variables are defined, they have different scopes of
visibility. There are five different scopes, namely session, application, docu-
ment, dialog and anonymous scope. For example, a document variable is visible
throughout that Voice XML document, but not within the whole application, let
alone the session.

Variables are referenced in cond and expr attributes:

<if cond="city == ’LA’">

<assign name="city" expr="’Los Angeles’"/>
<elseif cond="city == ’Philly’"/>

<assign name="city" expr="’Philadelphia’"/>
<elseif cond="city == ’Constantinople’"/>

<assign name="city" expr="’Istanbul’"/>
</if>

<assign name="varl" expr="varl + 1"/>

<if cond="i > 1">
<assign name="i" expr="i-1"/>
</if>

The expression language used in variable references is ECMAScript.

There are several standard session variables defined. These can be used
to transmit information like the caller ID, information of the originating line
(payphone, mobile phone, prison etc.).

3.6 Grammars
3.6.1 Speech Grammars

A speech grammar specifies a set of utterances which the user may speak, and
gives corresponding string values or a set of attribute-value pairs to describe the
information or action.

VoiceXML specification 1.0 does not define a grammar format, neither does
it require support of a particular grammar format.

The <grammar> element is used to define an inline grammar or an external
grammar. An inline grammar is specified by the content of the grammar ele-
ment, while an external grammar is specified by src attribute of the <grammar>
tag.

3.6.2 DTMF Grammars

Data input may as well be performed using DTMF codes generated by pressing
the telephone keys. This is supported with DTMF grammars. The definition
of the DTMF grammar is performed by using the <dtmf> tag. As with speech
grammars, no DTMF grammar formats are defined, and the grammars may be
inline or external.

3.7 Event handling

Events may be thrown by the implementation platform or by the document in-
terpreter. The platform throws events when the user does not respond, does not
respond intelligibly, says some common predefined phrase like “help”, etc. The
interpreter throws events when it encounters a semantic error in the document,
or when it encounters a jthrow; element.

Elements are caught by catch elements, which include <catch>, <error>,
<help>, <noinput>, and <nomatch>. An element inherits the catch elements
from its ancestors, if they are not defined within the current context. Thus,
common event handling behaviour can be specified at any level of the VoiceXML
application.

3.7.1 Event Types

Events may be divided into pre-defined and application-defined events. Events
are also subdivided into plain events and error events. Error events are named
so that multiple levels of granularity is supported—events may be caught by
specific name or by a common prefix. For example, pre-defined events in-
clude cancel, telephone.disconnect.hangup, and exit, among a few others.
The pre-defined errors include error.semantic, and error.noauthorization,
among others.

3.7.2 Throwing and catching events

Events may be thrown explicitly with <throw>. They may be pre-defined ones:
<throw event="nomatch"/>

Also application-defined elements may be thrown:

<throw event="mil.warroom.nuclear.novegetable"/>

Elements may be caught with <catch> element:

<form id="launch_missiles">
<field name="password">
<prompt>What is the code word?</prompt>
<grammar>rutabaga</grammar>
<help>It is the name of an obscure vegetable.</help>
<catch event="nomatch noinput" count="3">
<prompt>Security violation!</prompt>
<submit next="apprehend_felon" namelist="user_id"/>
</catch>
</field>
<block>
<goto next="#get_city"/>
</block>
</form>

Some events have implicit default catch elements defined. For example, an
error event by default exits the interpreter, and help events replay the prompt
to the user.

3.8 Prompts

The prompt element controls the output of synthesized speech and prerecorded
audio. A simple prompt example follows.

<prompt>Please say your name.</prompt>

The <prompt> tags may be omitted, if there are no prompt attributes to be
defined and if the prompt contains no speech markup. Below are examples of
such prompts:

Please say your name.
<audio src="say_your_name.wav"/>

Prompts may have special speech markup to indicate prosody, breaks or
instructions how a specific word or phrase should be spoken:

<prompt> This is <emp>also</emp> computer-generated text.
<break size="medium"/> Do you like it? </prompt>

<prompt>You are calling <value expr="home_num" class="phone"/></prompt>
<prompt>You are calling

<sayas class="phone">312-555-1212</sayas>
</prompt>

In the current specification of VoiceXML, the text-to-speech engine may
ignore some or all of the speech markup.
Prompts may have audio clips intermingled with synthesized speech:

<prompt>

Welcome to the Bird Seed Emporium.

<audio src="http://www.birdsounds.example/thrush.wav"/>

We have 250 kilogram drums of thistle seed for

<sayas class="currency">299.95 euro</sayas>

plus shipping and handling this month.

<audio src="http://www.birdsounds.example/mourningdove.wav"/>
</prompt>

If the audio file cannot be played, the contents of audio element is played
instead. If the content is empty, an appropriate error event is thrown. This
makes it possible to define alternate rendering of prompts:

<prompt>
<audio src="welcome.wav'"><emp>Welcome</emp> to Voice Portal.</audio>
</prompt>

Usually the user may interrupt, or “barge-in” on a prompt. This speeds up
conversations and follows good user-interface design guidelines, but sometimes
such behaviour might not be suitable. For example, it may be desired to force
the user to listen to all of a warning or an advertisement. This may be done by
setting the bargein attribute to false:

<prompt bargein="false"><audio src="eatspam.wav"/></prompt>

Prompts may also be set to change with each attempt. Information-requesting
prompts may become shorter after a few tries under the assumption that the
user is becoming more familiar with the task. Help messages, on the other hand,
may become more detailed, or prompts can change randomly just to make the
interaction less monotonic and annoying.

Here is an example of changing forms using the count attribute:

<form id="tapered">
<block>
<prompt bargein="false">Welcome to the ice cream survey.</prompt>
</block>
<field name="flavor">
<grammar>vanilla|chocolate|strawberry</grammar>
<prompt count="1">What is your favorite flavor?</prompt>
<prompt count="3">Say chocolate, vanilla, or strawberry.</prompt>
<help>Sorry, no help is available.</help>
</field>
</form>

3.9 Executable Content

VoiceXML documents may contain ezecutable content, which refers to blocks of
simple procedural logic. Such logic appears in <block> form items, <filled>
actions in forms and fields, and in event handlers.

Executable contents can contain variable definitions and assignments, condi-
tional execution and branches, definitions of ECMAScript functions and state-
ments. Below are some examples of executable content:

<if cond="total > 1000">
<prompt>This is way too much to spend.</prompt>
<throw "com.xyzcorp.acct.toomuchspent"/>

</if>

<nomatch count="1">

To open the pod bay door, say your code phrase clearly.
</nomatch>
<nomatch count="2">

<prompt> This is your <emp>last</emp> chance. </prompt>
</nomatch>
<nomatch count="3">

Entrance denied.

<exit/>
</nomatch>

4 Example Implementation Platforms

4.1 IBM WebSphere Voice Server

IBM offers the IBM WebSphere Voice Server product as part of their ViaVoice
product family [2]. There are two main products in the Voice Server family.

Voice Server with ViaVoice technology supports Voice over IP (VoIP) technolo-
gies, enabling Internet-based voice applications. Voice Server for DirectTalk
supports VoiceXML application deployment for traditional telephony servers.

The VoIP servers run on Windows NT and operate in a similar environment
and scalability as contemporary web servers.

The Voice Server for DirectTalk runs on IBM’s AIX based DirectTalk tele-
phony servers. DirectTalk is intended for enterprise and operator-scale services:
it supports up to 360 simultaneous calls per server, with ability to cluster servers.
Since DirectTalk builds on existing technology and hardware, it is not exclu-
sively VoiceXML — traditional state tables, as well as Java Beans are supported.

IBM offers Windows NT based SDK’s for their Voice XML technologies free
of charge.

IBM only supports US English language at the moment.

4.2 New Lucent Speech Server

Lucent has a product called New Lucent Speech Server, which is a telephony
server hardware platform running on Solaris x86 and Lucent’s own server soft-
ware [9]. The application environment supports VoiceXML, C++ and Java.

Lucent’s Speech Server includes VoiceXML interpreter as well as text-to-
speech and voice recognition software. No web server platform is included by
default, although considering the wide deployment and matureness of other web
server and XML solutions, that cannot be considered as a major drawback.

Lucent emphasizes traditional telephone network services in their product
offerings.

4.3 Motorola Internet Exchange

Motorola offers the Motorola Internet Exchange (MIX) technology to implement
WML, VoxML and VoiceXML services [5]. The emphasis on their solution is
on the presentation format independence — services may be deployed both on
WAP and as voice-based telephony services with little extra cost.

Motorola’s solution is based on their own Aspira server architecture, of which
they unfortunately submit very little concrete information.

Motorala targets a wide variety of applications and customers with their
platform. Examples range from large alliance-scale telephone service systems
to telecom operator services to applications internal to a single company, like
voice-mail management systems.

4.4 Voice Application Portals

With the advent of standardized voice application markup languages, new voice
application portals have emerged. One such company is Tellme Studio[6]. The
company provides developers a possibility to develop and deploy VoiceXML ap-
plications with no charge. The applications can be accessed through the PSTN
using Tellme Studio’s exchange and selecting the custom extension number of
the application. For charge, they will also provide companies their own 1-800
service numbers within the US.

10

A similar service is provided also by BeVocal [1]. Just like Tellme, BeVocal
offers a free development environment for rapid deployment of Voice XML based
services.

An example of services offered in the BeVocal voice portal would be the
Business Finder, which functions like a location-sensitive, voice-controlled yellow
pages service, containing information of over one million US-based companies.
The index may be searched using business categories like “Fast Food” or using
brand names like “McDonalds”. The Business Finder service may be accessed
using BeVocal’s toll-free number.

Another service example is Driving Directions, which gives driving instruc-
tions between two addresses using normal telephone.

Other services offered by BeVocal include stock quotes, weather and traffic
reports and flight information.

Tellme, while providing business-oriented services similar to BeVocal, also
has a multitude of entertainment services, including soap opera updates, voice-
based blackjack, sports information and so on.

5 Related Technologies

5.1 WML

Wireless Markup Language (WML; the language used to render WAP appli-
cation) provides a reasonably similar application framework as VoiceXML [7].
While the VoiceXML application consists of documents which contain dialogs,
a WML application consists of stacks and cards, and navigation in the applica-
tion is very similar to VoiceXML. Furthermore, the scripting language used in
WML, WMLScript is based on JavaScript and ECMAScript.

Since the application structure and information bandwidth are so similar
in VoiceXML and WML, and since the applications are intended to be used
in similar environments, it should be very compelling to provide phone service
counterparts of current WAP applications.

5.2 Java API Speech Markup Language

Java API Speech Markup Language is an XML language submitted to the W3C
by Sun Microsystems. Its purpose is to define a language suitable for marking up
speech for text-to-speech synthesizers, providing markup about the document
format, as well as of prosody, pronounciation and emphasis of speech [3]. While
VoiceXML provides similar features in a limited scale, the focus of JSML is
much narrower, concentrating on the T'T'S markup.

5.3 Java API Speech Grammar Format

Java API Speech Grammar (JSGF) defines a standardized grammar to be
used in limited-vocabulary speech recognition systems, such as those used in
VoiceXML applications [4].

While JSGF is not officially related to VoiceXML, it acts as a natural coun-
terpart to VoiceXML as VoiceXML does not specify any grammar language by
itself. It is repeatedly used in the examples of VoiceXML specification docu-
ment, hinting a strong relationship between the two languages.

11

5.4 TalkML

TalkML is an experimental XML language for voice browsers developed by HP
labs [8]. It seems to be projected for very similar applications as VoiceXML,
although it is meant to be interpreted in the client terminal, not in a centralized
switch hardware like VoiceXML. Therefore the language is much more limited
in scope than VoiceXML.

6 Conclusions

VoiceXML, while being a very young standard, already has a large number
of supporting companies and a surprisingly good product support. Its main
strengths lie on its ability to take advantage of the tried and established web
server development model, which is also used in WAP applications. Further-
more, there is a clear need on the market for standardized platform for telephony
application development, since by automating their telephone services compa-
nies can often find significant cost savings because of smaller customer service
costs.

The main drawback of VoiceXML at the moment is its incomprehensivness.
Many central aspects of the language, like the speech and DTMF grammars, are
completely unspecified. Furthermore, specifications for such things as supported
audio formats are quite lacking. The language also supports many different
platform-specific extensions. All these loose ends may lead to a situation similar
to different SQL dialects, in which the applications in principle are written in
a common language, but the porting costs between different platforms are still
considerable.

References

[1] Inc. BeVocal. Web pages, Nov 2000. http://www.bevocal.com/.

[2] Ibm viavoice web site. ~Web page, November 2000. http://www-
4.ibm.com/software/speech/enterprise/ms_3.html.

[3] Sun Microsystems. Java api speech markup language. Web
pages, August 1997. http://java.sun.com/products/java-
media/speech/forDevelopers/JSML/.

[4] Sun Microsystems. Java api speech grammar format. Web pages, 1998.
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/.

[5] Inc. Motorola. Web pages, Nov 2000. http://mix.motorola.com/.

[6] Tellme Networks. Tellme studio home page. Web page, November 2000.
http://www.tellme.com.

[7] The =xml cover pages, November 2000. http://www.oasis-
open.org/cover /sgml-xml.html.

[8] Dave Raggett. Introduction to talkml. Web pages, 2000.
http://www.w3.org/Voice/TalkML/.

12

[9] Lucent Technologies. Web pages, Nov 2000.
http://www.lucent.com/speech/products.html.

[10] Voicexml forum home page, October 2000. http://www.voicexml.org/.

13

