

Antti Kiviluoto

Antti.Kiviluoto@hut.fi

Speech coding standards –methods that enable voice communication

Presentation

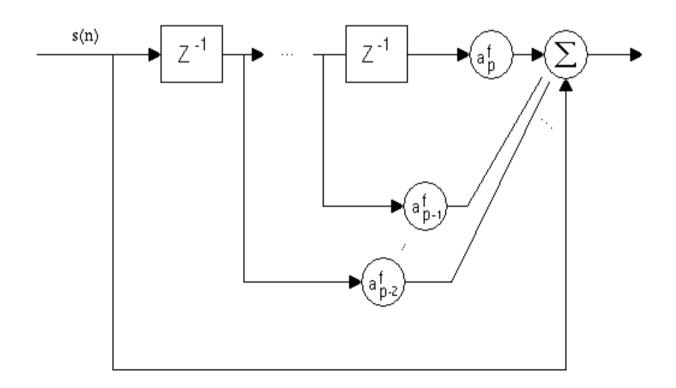
- Intro
- Speech Analysis Synthesis & Linear Prediction
- Speech coding standards
- Subband & Transform Coders
- Applications for synthetic speech
- Summary

Intro

- Interest towards speech coding & standardization:
 - World wide growth in communication networks
 - Emergence of new multimedia applications
 - Advances in Very Large-Scale Integration (VLSI) devices
- Standardization
 - International Telecommunications Union (ITU)
 - European Telecom. Standards Institute (ETSI)
 - International Standards Organization (ISO)
 - Telecommunication Industry Association (TIA), NA
 - R&D Center for Radio systems (RCR), Japan

Intro

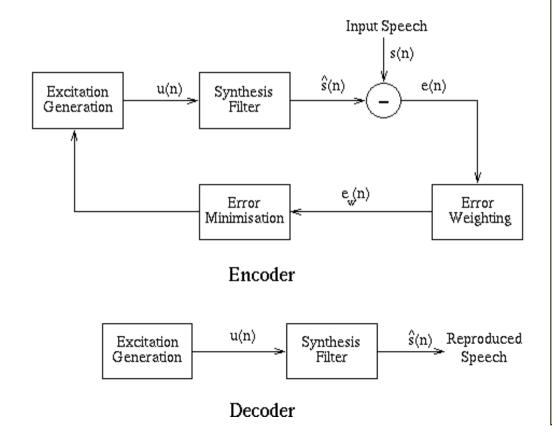
- Signal models are based on Linear Predictive Coding (LPC)
 - Open-loop linear prediction (LP)
 - Closed-loop/Analysis-by-synthesis LP
 - Subband & transform coding algorithms
- Quality standards for SCA
 - Mean Opinion Score (MOS)
 - Diagnostic Rhyme Test (DRT)
 - Diagnostic Acceptability Measure (DAM)


- Speech is produced by the interaction of the vocal tract with the vocal chords in the glottis
- Engineering model:
 - Vocal tract time-varying digital filter
 - Filter parameters estimated by using LP algorithms

Linear Prediction

- Introduced in late 1960's
- Widely used in speech signal processing
- Number of available techniques since introduction
- Basic principle of prediction still the same
- Most recent sample predicted by a linear combination of past samples
- LP analysis done by Finite-length Impulse Response (FIR) digital filter

Linear prediction analysis



- Open-loop linear prediction (waveform)
 - Low complexity codecs
 - Good quality with rates above 16 Kbit/s
 - Pulse Code Modulation (PCM)
 - simplest form of waveform codecs
 - Non-linear quantization
 - quantizing the speech signal directly
 - Adaptive Differential PCM (ADPCM)
 - quantize the difference between the speech signal and a prediction

- Closed-loop/Analysis-by-synthesis LP
 - introduced in 1982
 - Intelligible speech at 2.4 kbits/s and below
 - Frame size usually 20 ms
 - Cannot provide "natural" sounding speech at any bit rate
 - Multi-Pulse Excitation (MPE) codec
 - Regular-Pulse Excitation (RPE) codec
 - Code-Excitation Linear Predictive (CELP) codec
 - Vector Sum Excited Linear Prediction (VSELP)

AbS Codec Structure

- Splitting the input speech to be coded into frames
- Parameters determined for Synthesis filter
- Excitation determined to the filter
- Encoder transmits
 information
 representing the filter
 parameters
 and the excitation to the
 decoder
- at the decoder the given excitation is passed through the synthesis filter to give the reconstructed speech

- Short-Term Prediction (STP)
 - Captures the formant structure of short-term speech spectrum
- Long-Term Prediction (LTP)
 - Captures the long-term correlation in the speech signal
 - Representing the periodicity in speech

- Multi-Pulse Excitation (MPE) codec
 - Skyphone standard of British Telecom International, used in passenger communications in aircraft
 - Excitation is a sequence of multiple nonuniformly spaced pulses
 - Uses both short- and long-term prediction
- Regular-Pulse Excitation (RPE) codec
 - Used in GSM standard
 - Excitation is a sequence of multiple uniformly spaced pulses
 - Uses only long-term prediction

- Code- Excitation Linear Predictive (CELP) codec
 - Codebook contains excitation vector
 - Uses long- and short-term prediction

- Quality standards for SCA
 - Evaluation of speech quality and intelligibility
- Mean Opinion Score (MOS)
 - Quite common in standardization tests
 - Five-level quality scale, 5 (excellent) 1 (bad)
 - 4.0-4.5: network or toll quality
 - 3.5-4.0: communications quality (cellular grade)
 - 2.5-3.5: synthetic quality

- ITU G.726 and G.727 ADPCM Coders
 - Quantize the difference between the speech (current) signal and a predicted speech samples
 - Prediction parameters are obtained by backward estimation, from already quantized data
 - Algorithm operates at 16, 24, 32, 40 and 64 Kbit/s
 - G.726: individually optimized quantizers
 - G.727: embedded quantizers developed for packet network applications (switch rates)
 - MOS for 32 Kbit/s: 4.1
 - Complexity: 2 MIPS

- Inmarsat-B Adaptive Predictive Vocoder
 - The International Mobile Satellite B standard
 - Uses ADPCM coder with LTP and 6th order STP
 - Algorithm operates at 9.6 and 12.8 Kbit/s
 - MOS for 9.6 (12.8) Kbit/s: 3.1 (3.4)
 - Complexity: 10 MIPS

- LPC-10(e) Federal Standard 1015
 - Introduced by Department of Defense in 1976
 - Secure communications
 - Uses 10th order predictor
 - Algorithm operates at 2.4 Kbit/s
 - MOS for 2.4 Kbit/s: 2.3
 - Complexity: 7 MIPS

- Mixed Excitation Linear Prediction (MELP) codec
 - Introduced by U.S. government in 1996
 - Development motivated by voicing errors in LPC-10
 - Algorithmic delay estimated 122.5 ms
 - Algorithm operates at 2.4 Kbit/s
 - MOS for 2.4 Kbit/s: 3.2
 - Complexity: 40 MIPS

- ETSI full-Rate GSM 6.10
 - Pan-European digital cellular standard
 - Uses RPE coder with LTP
 - Algorithm operates at 13.0 Kbit/s
 - MOS for 13.0 Kbit/s: 3.5-3.9
 - Complexity: 5-6 MIPS

- FS-1016
 - Used by Department of Defense (DoD) for 3rd-generation secure telephone unit (STU-III)
 - Developed jointly by DoD and AT&T Bell Laboratories
 - Uses CELP algorithm
 - excitation is formed by combining vectors from LTP and stochastic codebook
 - Algorithm operates at 4.8 Kbit/s
 - MOS for 4.8 Kbit/s: 3.2
 - Complexity: 16 MIPS

- Vector Sum Excited LP (VSELP) Standards
 - Algorithm embedded to 3 digital cellular standards
 - TIA IS-54 (Japan & North America)
 - ETSI 6.20 GSM half-rate (Europe)
 - Highly structured codebooks
 - Reduceses computational complexity
 - Increases robustness to channel errors
 - Algorithm operates at 2.4 Kbit/s
 - MOS for 6.3 (8.0) Kbit/s VSELP: 3.4 (3.5)
 - Complexity: 14 MIPS

- ITU G.728 Low-Delay CELP
 - Uses low-delay CELP coder
 - Short frames
 - Short exication vectors
 - No LTP and the order of STP is increased to 50
 - Speech quality equivalent or better than G.726
 - Algorithm operates at 16.0 Kbit/s
 - MOS for 16.0 Kbit/s: 3.4
 - Complexity: 30 MIPS

• IS-96

- Used in Code Division Multiple Access (CDMA), standard for cellular communications
- Uses CELP algorithm with STP
- Bit rate is variable, determined by speech activity
- Lower rates achieved by allocating fewer bits to LP parameters
- Algorithm operates at 1.2, 2.4, 4.8 and 9.6 Kbit/s
- MOS for 9.6 Kbit/s: 3.3
- Complexity: 15 MIPS

- ITU G.729 and G.729A CS-ACELP
 - Designed for wireless and multimedia network applications
 - Uses Conjugate Structure Algebraic CELP
 - Low-delay algorithm (15 ms)
 - Frame size 10 ms
 - Uses 2 codebooks
 - G.729 Annex has lower complexity and quality
 - Algorithms are interoperable
 - Algorithm operates at 8.0 Kbit/s
 - MOS for 8.0 Kbit/s: G.729=4, G.729A=3.8
 - Complexity: G.729=20 MIPS, G.729A=11 MIPS

- ITU G.723.1 MP-MLQ/ACELP
 - Speech coder for audio and videoconferencing over public telephone networks
 - Part of ITU H.323 and H.324 standards
 - Also recommended to be default audio codec for voice of the network (VOIP)
 - Standard is dual-rate with 2 excitation schemes
 - Multipulse maximum likelihood quantization for 6.3 Kbit/s
 - ACELP for 5.3 Kbit/s
 - MOS for 5.3 (6.3) Kbit/s: 3.7 (4.0)
 - Complexity: 16 MIPS

Subband & Transform Coders

- Subband Coder
 - The signal is divided into frequency subbands
 - Coder exploits the statistics of the signal and encodes each band using a different number of bits
 - E.G lower-frequency bands are allotted with more bits
 - Preserve critical pitch and formant information
 - ITU G.722, standard for ISDN teleconferencing
 - Low frequency subband quantized with 48 Kbit/s
 - High-frequency with 16 Kbit/s
 - MOS for 64 Kbit/s: 4.1
 - Complexity: 5 MIPS

Subband & Transform Coders

- Sinusoidal Transform Coding
 - Speech is represented by a linear combination of sinusoids
 - Opportunity to reduce the bit rate
 - Speech is typically periodic
 - Lots of pauses
 - Considered for wideband and high-fidelity app.
 - MOS for 2.4 (4.8) Kbit/s: 2.9 (3.5)
 - Complexity: 13 MIPS

Applications for synthetic speech

- Telecommunications and Multimedia
- For the Blind
- For the Deafened and Vocally Handicapped
- Educational
- Samples...

Summary

Algorithm	Bit Rate (Kbit/s)	MOS	Complexity (MIPS)	Frame Size (ms)
PCM G.711	64	4.3	0.01	0
ADPCM G.726	32	4.1	2	0.125
SBC G.722	48/56/64	4.1	5	0.125
LD-CELP G.728	16	4.0	30	0.625
CS-ACELP(-A) G.729	8	4.0 (3.8)	20 (11)	10
MPC-MLQ G.723.1	6.3/5.3	4.0/3.7	11	10
GSM HR VSELP	6.3	3.4	14	20
IS-54 VSELP	8	3.5	14	20
IS-96 QCELP	1.2/2.4/4.8/9.6	3.3	15	20
Inmarsat-B APC	9.6/12.8	3.1/3.4	10	20
MELP	2.4	3.2	40	22.5
FS 1016 – CELP	4.8	3.2	16	30

Summary

- Linear prediction widely used in speech coding
- Speech coding research has come a long way in the last 10 years
- Need for speech codecs from cellular phones to multimedia systems

The End

• Time for questions