Multimedia Communications

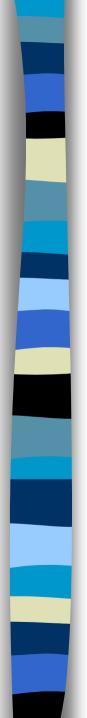
Directions and Innovations

Introduction

István Beszteri

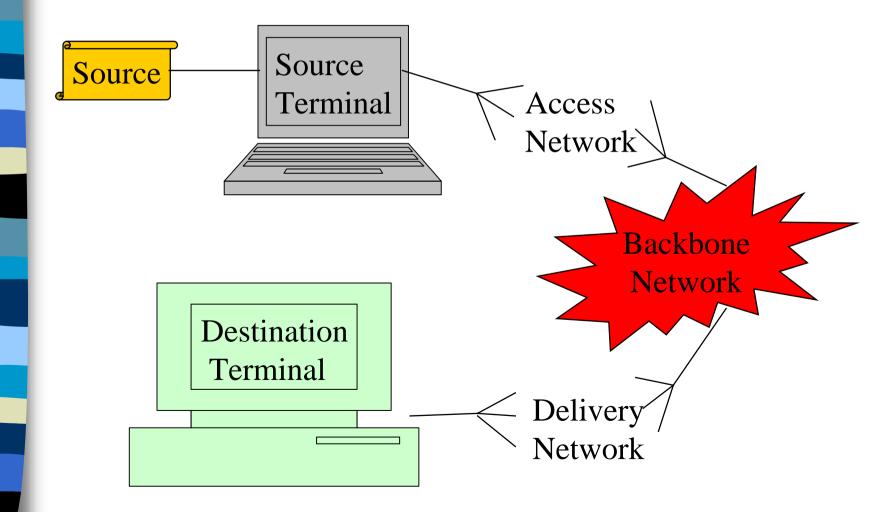
istvan.beszteri@hut.fi

Multimedia Communications: Source Representations, Networks and Applications


- Introduction
- Networks and Network Services
- Multimedia Sources
- Source and Destination Terminals
- Applications of Multimedia Communications Networks
- Conclusions

Introduction

- Universal access to multimedia information
- Multimedia communications
- Transmission of multimedia information over networks





Multimedia

- data
- voice
- graphics
- still images
- audio
- video

Components of Multimedia Communications Networks

Source

Consists of any or more of the multimedia sources

Source Terminal

Compress the source

- May be battery-power-limited
- May be aware that the destination terminal is limited in signal processing power
- Packetize the data (guard against packet loss; aid error corrections)

Access Network

- May be modeled by a single line connection (28.8 Kbit/s, 56Kbit/s, 1.5Mbit/s, ADSL, …)
- It may be a network that has shared capacity (have packet loss and delay)

Backbone Network

- May consist of a physical circuit switched connection (PSTN)
- Dedicated virtual path through a packet switched network (GPRS)
- Standard TCP/IP connection
- Characteristics: bandwidth, latency, jitter, packet loss, QoS guarantees

Delivery Network

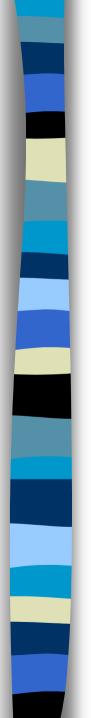
Like the Access NetworkOne to many transmissions

Destination Terminal

- Varying power
- Varying mobility
- Varying display

Varying audio capabilities

Networks and Network Services


Transmission rate

- Must be pushed as high as possible
- Transmission reliability
 - May suffer

Networks and Network Services

Services / Network	Rate	
POTS	28.8-56 Kbit/s	
ISDN	64-128 Kbit/s	
ADSL	1.544-8.448 Mbit/s(downstream) 16-640 Kbit/s (upstream)	
VDSL	12.96-55.2 Mbit/s	
CATV	20-40 Mbit/s	
OC-N/STS-N	N × 51.84 Mbit/s	
Ethernet	10 Mbit /s	
Fast Ethernet	100 Mbit/s	
Gigabit Ethernet	1000 Mbit/s	
FDDI	100 Mbit/s	
802.11 (wireless)	1, 2, 5.5, and 11 Mbit/s	
	in 2.4 GHz band	
802.11a (wireless)	6-54 Mbit/s in 5 GHz band	

Bottlenecks

- As users obtain higher access rates bottlenecks move to the Backbone Network
- The bottleneck can be in Access Network, Backbone network, in the Delivery Network or in the accessed server

Transmission Protocols

TCP (Transmission Control Protocol)

- Reliable
- Connection-oriented service
- Well suited for data traffic via Internet
- Retransmission of lost packets
 - Problematical for delay-sensitive multimedia traffic

Transmission Protocols (cont.)

UDP (User Datagram Protocol)

- Connectionless
- Best-effort services over the Internet
- Avoid delays associated with transmission
- Not reliable (possible packet loses)

Packet Switched Networks

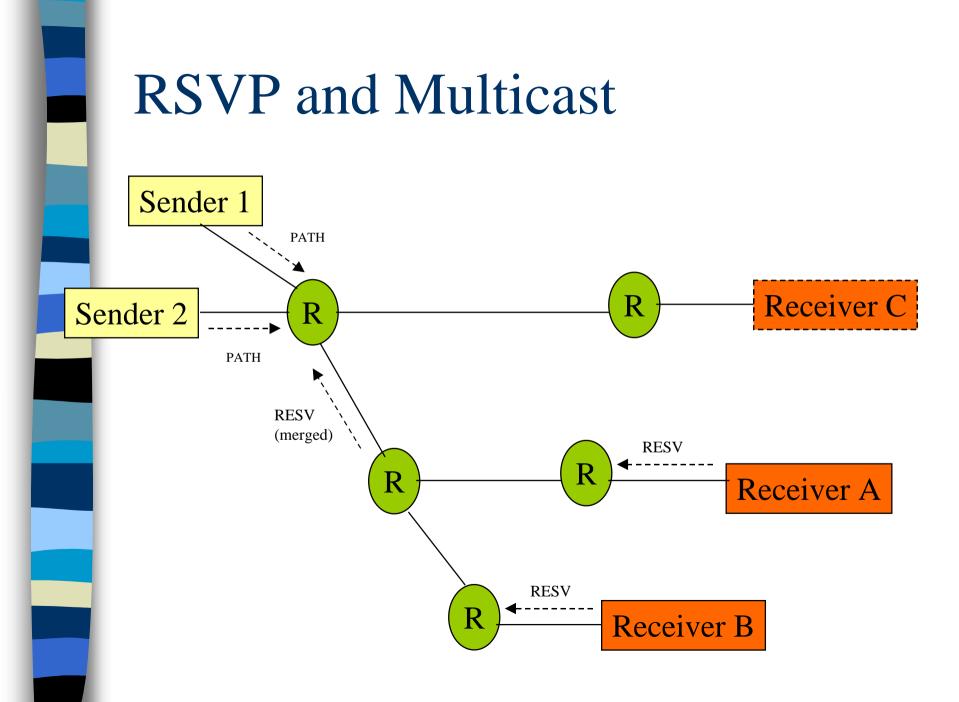
Unicast

- Source terminal sends packets to a single Destination Terminal
- Broadcast
 - Source terminal sends packets to all terminal on a network

Multicast

 Source terminal sends packets to a multicast group

Multicasting


- Currently not supported by many of the routers
- Achieved by using Multicast Backbone or Mbone
- Implemented on top of the Internet using tunneling
- Standard IP address is used to encapsulate the multicast transmissions

Real-time Transport Protocol

- Developed by IETF for multimedia communications
- Associated control protocol: RTCP
- Allows multimedia applications to work together
- Compression techniques can be negotiated
- Synchronization of multiple media
- RTCP is adjusted to the actual traffic

Resource Reservation Protocol (RSVP)

- Allows a receiver to request certain performance requirements
- Supports unicast and multicast
- For multicast it allows reservations to be merged

Other Protocols

H.320 or H.324 videoconferencing (ITU)

- IETF was working on similar protocols
- ITU and IETF collaboration -> H.323
- H.323 includes H245 call control protocol

Multimedia Sources

Bandwitdth (Hz)	Sampling rate	Bits per Sample	Bit Rate
200-3400	8000 samples/s	12	96 Kbit/s
50-7000	16000	14	224Kbit/s
20-20,000	44,1 Ks/s	16 per chanel	1.412 Mbit/s two chanels
	512 x 512	24	6.3 Mbit/s
	720 x 576 x 30	24	300 Mbit/s
	1280 x720 x 60	24	1327 Mbit/s
	200-3400 50-7000 20-20,000	200-3400 8000 samples/s 50-7000 16000 20-20,000 44,1 Ks/s 512 x 512 720 x 576 x 30	200-3400 8000 samples/s 12 50-7000 16000 14 20-20,000 44,1 Ks/s 16 per chanel 512 x 512 24

Compression is needed...

Telephone Bandwith Speech Coding Standards

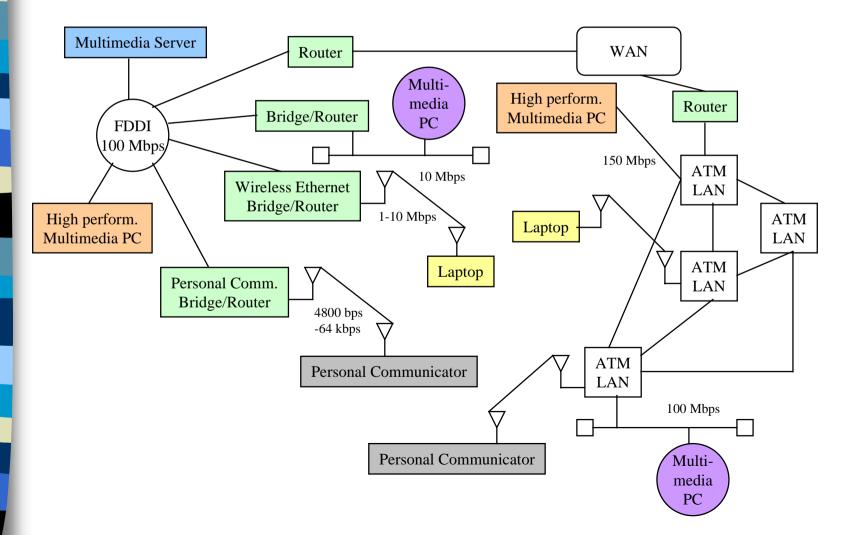
Coder	Bit Rate (Kbit/s)	Quality	Complexity(MIPS)
Log PMC (G.711)	64	Toll 4-4.3 MOS	0.01
ADPMC (G.726)	16-40	Toll at 32 Kbits/s 4.1 MOS	2
LD-CELP (G.728)	16	4.0 MOS	30
RPE-LTP (GSM)	13	3.5 MOS	6
QCELP (IS-96)	0.8-8.5 (variable)	3.3 MOS	15
VSELF (IS-54)	7.95	3.5 MOS	14
EFR (IS-641)	8	3.8 MOS	14
EVRC (IS-127)	1.2-9.6 (variable)	3.8 MOS	20
CS-ACELP (G.729)	8	4.0 MOS	20
CS-ACELP (G.729A)	8	3.75 MOS	11
MPC-MLQ (G.723.1)	5.3-6.4	3.5 MOS	16
CELP (FS 1016)	4.8	3.2 MOS	16

Videoconferencing Standards

Standard	Network	Video	Audio
H.320 (1990)	ISDN	H.261	G.711
H.323 (1996)	LANs/Internet	H.261	G.711
H.324 (1995)	PSTN	H.263	G.723.1
H.310 (1996)	ATM/B-ISDN	H.262	MPEG-1

Source and Destination Terminals

Terminal: Any device that connects a user to the network


Applications of Multimedia Communications Networks

The two most common multimedia communications applications are:

- Video streaming to multiple users
- Party-to-party or multiparty videoconferencing

Video Streaming to Multiple Users

Videoconferencing

One-to-one

- Relatively easy to deal with
- Latency, round trip delay
- Users negotiate compression methods and transmission rates
- Audio has priority

Videoconferencing (cont.)

Multiparty videoconferencing

- All participants receive all audio
 - Mixing the audio from all participants at a central location
 - For each participants to transmit audio of all other participants (requires same coding method)
- Video to display
 - All participants see all the others (Hollywood Squares)
 - Director control
 - Loudest audio control

Conclusions

Delivery of multimedia content via seamless network connectivity is becoming reality

New solutions are developed every day

