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Calculating the Spectrum éé;xwyc.
of aSteuck Piano String

A. H. Benade December 1983

Introductory Remarks

The question of what is the spectrum of a struck string comes up
from time to time, and many piece-meal attacks have been made on it over
the years. I have given an account of some of the basic phenomena in my
"Fundamentals of Musical Acoustics' without presenting there much more
than hints of the calculations and/or measurements that were carried out
by me (either in years previous, or during the actual writing of the book)
to support the account, There are of course references to the literature
available at the time of writing.

For various reasons I am impelled to sketch out here at least the
outline of a framework upon which one can build a coherent picture of
what takes place. No attempt 1is made to present a complete picture. But
I will assert that the formulation is one which may readily be adapted
to the case of broad and soft hammers. No claim is made for anything
new, only that many things which I and others have known about for many
years can be made to come out in a consistent fashion upon the basis of
a first-principles calculation.

The spectrum of a vibrating piano string 1s inexorably limited at
the high frequency end by hammer softness effects and breadth effects
that are outlined in FMA, Chapter 8 sections 2,3,4,5. At the time of
writing this part of the book I worked out the underlying behavior along
the following lines: The hammer blow is a force f(x)-g(t) that is
distributed in time and space along the string. The excited spectrum is
therefore band limited both by the upper temporal frequency limit of
the Fourier transform ¢(w) = §g(t)exp(~jwt)dt and by the spatial frequency
limit of the transform ¢ (k) = jf(x)exp(—jkx)dx. The relation k = w/c
for all disturbances on the string assures that both limitations govern
what is going on.

The overall dynamics of the struck string is summarized in FMA
Chapter 17 sec. 4, although the discussion of the clavichord in sec. 1
of Chapter 18 and the numbered statements on page 356 are germane to a
discussion of string behavior between the time of arrival of the hammer
and when it rebounds. Here, in a nutshell,- is what goes on? If the
.hammer 1s pretty massive, and as long as it is in contact with the string,
we have a pair of back-to-back clavichords. That is, there are (roughly
speaking) two modal collections of vibrations, that may be said to
belong to the two arbitrarily chosen string segments of length H and L
(with H + L = L_ being the overall string lengtl). In this simplified
initial view, wg recognize that the modal frequencies on the two sides
are of the type f = nc/2H and £f_ = mc/2L. The two sets of frequencies
are not necessari&y in simple relation to one another, since the L/H
is not required to be integer. When the hammer separates from the string,
we must start the calculations all over, where the subsequent configura-
tion of the string F(x,t) has for its initial shape So(x) a composite
of what was on the two string segments at the instant when the hammer
left. That is



So(x) = (Shape on segment H, + Shape on segment L,
used for 0 < x < H used for H g x < Lo

There is of course a related velocity shape Vo(x) based similarly on the
segment velocity shapes. We next can use the usual Fourier expansions
belonging to the complete, unmodified, string to deduce the motion that
follows from these initial conditions.

In what follows we have: (A) A review of the vibrational properties
of a nonuniform and/or discrete.(or mixed)one dimensional chain, to lay
the groundwork for what follows. This outline is closely based on some
notes I use in our sophomore '"Waves" course for physics majors.

(B) We calculate the normal modes of the composite string-plus-hammer
system and set down their orthogonality relations. These are exact
calculations, assuming no elasticity in the hammer contact. The method
easily generalizes to include such things. See the "Digression" on

page 332 of FMA for a carefully worded discussion of when it 1s appropriate
to talk as though the string segments had their own modes.

(C) Next comes an actual outline of what must be done to;(a) €alculate the
motion during the hammer contact time, (b) The duration of the contact
time. (c) The motion of the string after the hammer leaves it.

In closing this set of introductory remarks I should offer a warning
and an apology. There may be 'glitches" of detail and notation in these
notes, because they are the work of a single busy afternoon, and were not
really checked through afterward.



Some Properties of the Vibrational Modes of a
1-Dimensional Lumped/Courteous Chain

A, H. Benade Dec. 1983

The system under consideration, and the notation used to describe
it is presented in the sketch. g7/
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Bere y(x ) Yives the amplitude of oscillation of the element of mass m
whose "address" along the chain is x . The sequence of x can be discrete
or continuous. In the latter case m = u(x )dx, the mass' of a short plece

of chain having length dx and local linear mass density v(xv).

Newton's second law applied to the vth mass may now be written (for
sinusoidal motion at the frequency w)
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Note that the tension need not be constant on the two sides of the mass
in question ["Tension" is a special case of any sort of inter-mass elastic
coefficient]. For the case of continuously—-distributed mass u(x) and
tension T(x) we can write Eq. 1 explicitly in the form
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The discrete version is closely similar.

For any given sort of (essentially nondissipative) boundary conditions,
we get a discrete set of 'seach with its own modal frequency w)
- which are orthogonal with a weigﬂt function
determined by the mass distribution. That is, for two of these eigenfunctions
jﬁ and ﬁé we have for the discrete case.
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It is customary to call M_ the nth mpdal mass, for good reasons which
need not concern us here.” Note that tontinuity or discreteness of T
does not appear explicitlyiw \le o Thosw "Q‘LU reletrion - :

In a composite system, partly discrete and partly continuous, Eq. 3
must of course be written as the combination of the sum over all of the
discrete ¢ (x Y] (x Jm terms and the integral over the part in which
everythlngnis coRtinuous. After all ¢ (any given "address™) merely tells
about the motion of the piece of mass Bhat lives at this address, and
cares not about the details of how the mass is distributed.

The orthogonality property of Eq. 3 allows us to represent any
possible chain motion F(x,t) as a sum over a suitably weighted collection
of ¥'s. Thus, for free vibration we can write

4>y Fixg,t) = 7 @n(xp)\AnCoswﬂ + 3, Swewod |

The A and Bn coefficients are obtained, for example, from the initial
condifions wé impose of F(xv,t). Let us write
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Then the nth amplitude coefficients for a discrete mass chain come out to be
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The continuous-chain, and mixed continuous/discrete versions of these equa-
tions are pretty obvious.
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Normal Modes of a Piano String with Large Hammer Mass Attached

A. H. Benade 3 December 1983

For a short period of time after the hammer strikes a piano string,
the two move together. In order to find the string motion after the
hammer has rebounded, we must calculate what is the motion of the composite
string/hammer system at the instant of separation. This can best be done
upon the basis of a normal modes expansion. The present nele outlines
the determination of the modal frequencies and wave functioms.

A.. Calculation of Mode Frequencies

Consider a uniform string of length L , having uniform linear mass
density ¢ and uniform tension T . We attach a compact mass M_ to the
string at a distance B from the Reft end, as sketched. The stglng ends
are solidly fixed
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We recall that the wave velocity ¢ on the string is q& while
its (force/velocity) wave impedance R is‘&T B . If we attempt
to drive the string sinusoidally at tBe frquegcy w, the required force
is the sum of forces needed to drive the following three items: The left
hand part of the string ©f length H), the right hand part (of length L)
and the mass M . All three of these are fastened together so that they
have a common 3elocity v. From the definition of impedance, we have then
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From this, then

1y £ = Ny T
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Recall, this is éLe impedance seen by the driver when it makes the system
vibrate (willingly or unwillingly) at the imposed frequency. The normal
mode frequencies w_ are those at which the system will run without need
of external constraint.

~ That iS)Fdrive(w ) = 0 and so we get an eigenvalue equation.
(W (w) vy L(w.) =0
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or explicitly

ALy M+ R/t + Co*\<
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This is a very easy equation to solve for the successive kn's ... merely
set a computer to work. As a quickie look at what will happen, we note
that for a sufficiently large Mo/Ro ratio, the solutions are those which
make
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These are of course the modal frequencies of the left and right hand
string segments if they were to run in isolation. Note that both sides
of the composite system vibrate at each of these frequencies regardless
of its affinity for one or another segment of the string. We will find
at the end of part B below however that the right hand string segment
has only a small disturbance at frequencies that satisfy the

kn = (n/H) x integer requirement, while the left hand part hardly moves
in modes for which kn = (n/L) x integer.

B. Calculation of the Mode Shapes

Once we have found the values of the various k_'s (and thence the w 's
if we want) using the methods outlined above, we are in a position to
deduce the wave functions themselves. In order to get the string anchorage"
boundary conditions into the equations in the most direct fashion, we set
up a two-fold coordinate system as sketched.
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Here, the left and right strings have their displacements y and ¢n defined
in terms of the (known)kn and a sine function measured in from the “ﬂQQAAo{'>
end via the coordinates y and z. The displacement of the hammer mass Mo

is denoted by 5n, That is | 14)
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We find it convenient to specify everything in terms of the motion of the
mass Mo, so that
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To summarize: The wavefunctions § (x ) that fits the string end boundary
conditions, and the junction requirements at M_ have now been found. For
convenience, we have chosen to use different mfans for specifying the
"addresses" of the various mass particles making the system.

We can remark here that if M /R is large, then modes for which
k = (7/H)x integer will have a stagdigg wave amplitude on the right hand
portion of the string smaller by a factor (u H/M )(1/7 x that integer) << 1,
than that on the left (provided this k is abgut midway between the nearest
k's '"belonging" to the right hand side of the string). A similar factor
with L replacing H applies to the amplitude on the left when k = Kﬂ/L)x integer.

C. Orthogonality Property of the Modal Wave Function

We write out the orthogonality integral explicitly. Recall it is a
three-segment summation
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Note, the{sipk ngink ysproduct integrated over H, and its z-coordinate
cognate Iintegrated ovBr 'L are not orthogonal in and of themselves, except
in the (M /R )> « limit. It is an interesting exercise to understand why
both &'s Ber® can be made equal in magnitude to one another, and even
made equal to unity(e- wt SAJl Ko

It is always a good idea to grind out Eq. 7 to check the correctness
of the wave functions to which it is presumed to apply.
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Vibrational Shape of A Struck String

A. H. Benade 3 December 1983

When a hammer of mass M_ strikes a string of length L , a distance H
from its left end, we need to consider the motion in two stages. A. The
epoch during which the hammer is in contact with the string. B. The subse-
quent times after the hammer has rebounded from the string.

A. Motion while String and Hammer are in Contact

Suppose that at t = O the hammer arrives at the previously stationary
string with a velocity v_. In the notation of the A-set of notes dated
3 December 1983 on the pgoperties of a one-dimensional chain, we have the
initial shape S (x) of the string/hammer system to be zero everywhere,
while the initif1 velocity distribution is V_(x) = v, 8(x=H). If as in
Eq. 4 of the previous notes, the vibratlonaloshape 18 F(x,t) is written
in terms of a sum over vibrational modes

(49 k) Z_ip(x)\_A &5(«94 '\’\)DSMQ:H

Then Eq. 5a from before shows that all the A 's are identically zero,
while reference to the explicit forms for the V's given in the B set of
notes from 3 December on the modes of a string plus hammer leads us to

the following formula for the B 's.
/{'(o S}RL

2> B. mﬂw>%uw TSN
wazfu *M:LS

Here W is the n'th modal frequency of the composite system, k the
corresponding wave number w k on the string segments, M 1is the linear
mass density of the string,nand M_ is the modal mass as®defined on Eq. 3
of the A set of notes and written out explicitly for the string/mass
system in Eq. 7 of the B set of notes.

B. Duration of the Contact Time Between String and Hammer

Because the hammer is not glued to the string, we need only find
“the time at which the acceleration of hammer (and thence the force
exerted to cause its motion) changes sign in the motion calculated in
the preceding part of these notes. That is, we find the earliest time <t
for which the following relation holds

C’m.> dk{z = (X 't)]

That is
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Once again, the computer can be asked to do a tedious but straight-
forward job in solving this.

C. Vibration Recipe of the Free String after Hammer Separation

For this case the displacement and velocity shapes at t=0 (measured
from the instant of separation) are the t = T shapes belonging to the
composite string/hammer system at the instant of separation. The time <t
being that found in part B of these present notes. Explicitly then,
using the (y,z) notation of the composite system we have,

(40 B, 3 F(X,T) 1tk composte sufim

S*‘md‘\ﬂoﬂe
B
= \— T S ;LL«A.
(4 ) V%&)%}M = (K ) { te cc,\m\')os\lrc i
where x = y for 0 < x < H, and x = (Lo-z) for H < x <L,

We wish to use these in a calculation of the A , B_ amplitudes

belonging to the free-string disturbance Ffree string(x,g)
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Because S (x) and V (%) are written in terms of the segmental coordinates
y and z, it is convenient here to rewrite the free string wave functions in

the corresponding wai | Y Sin Lr\é (; 1\’.7 (&) g_mh béxé \_’
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with v adjusted to make y_(H) = 1. Notice that this segmental notation
does not upset the contingity of ¢y and its derivative across the point
x = H from which the hammer has jugt departed.

Using the form of §_ given in Eq. 8 we then can calculate the A and B

coefficients for Eq. 5 abBve via the following repetition of Eq. 5 frBm P
the A set of notes

see  rent payk
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Note that M? for the complete string comes to be (MOLO)/(Zsinzk?H).



