VLSI Design

DC & Transient Response

Outline

- DC Response
- Logic Levels and Noise Margins
- Transient Response
- Delay Estimation

DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter

• When
$$V_{in} = 0$$
 -> $V_{out} = V_{DD}$

$$V_{out} = V_{DD}$$

• When
$$V_{in} = V_{DD}$$
 -> $V_{out} = 0$

$$V_{out} = 0$$

In between, V_{out} depends on transistor size and current

- By KCL, must settle such that $I_{dsn} = |I_{dsp}|$
- We could solve equations
- But graphical solution gives more insight

Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

I-V Characteristics

• Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. V_{out}, V_{in}

- For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where |currents| are equal in

 $V_{in} = 0$

EE 447 VLSI Design4: DC and Transient Response

4

Load Line Analysis

 $V_{in} = 0.6V_{DD}$

EE 447 VLSI Design4: DC and Transient Response

Load Line Summary

EE 447 VLSI Design4: DC and Transient Response

DC Transfer Curve

Transcribe points onto V_{in} vs. V_{out} plot

Revisit transistor operating regions

Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called skewed gate
- Other gates: collapse into equivalent inverter

Noise Margins

How much noise can a gate input see before it does not recognize the input?

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

EE 447 VLSI Design4: DC and Transient Response

Transient Response

- DC analysis tells us V_{out} if V_{in} is constant
- Transient analysis tells us V_{out}(t) if V_{in}(t) changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

$$\begin{aligned} & V_{in}(t) = \\ & V_{out}(t < t_0) = \\ & \frac{dV_{out}(t)}{dt} = \end{aligned}$$

$$\begin{aligned} & V_{in}(t) = u(t - t_0)V_{DD} \\ & V_{out}(t < t_0) = \\ & \frac{dV_{out}(t)}{dt} = \end{aligned}$$

$$\begin{aligned} & V_{in}(t) = u(t - t_0)V_{DD} \\ & V_{out}(t < t_0) = V_{DD} \\ & \frac{dV_{out}(t)}{dt} = \end{aligned}$$

$$\begin{aligned} & V_{in}(t) = u(t - t_0) V_{DD} \\ & V_{out}(t < t_0) = V_{DD} \\ & \frac{dV_{out}(t)}{dt} = -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} t \leq t_0 \\ V_{out} > V_{DD} - V_t \\ V_{out} < V_{DD} - V_t \end{cases}$$

Ex: find step response of inverter driving load cap

$$\frac{V_{in}(t) = u(t - t_0)V_{DD}}{V_{out}(t < t_0) = V_{DD}}$$

$$\frac{dV_{out}(t)}{dt} = -\frac{I_{dsn}(t)}{C_{load}}$$

$$\frac{dV_{out}(t)}{dt} = \frac{\int_{0}^{2} (V_{DD} - V)^2}{V_{out}(t)} = V_{DD} - V_{t}$$

$$\frac{\int_{0}^{2} (V_{DD} - V_{t} - V_{out}(t)/2)V_{out}(t)}{V_{out}(t)} = V_{DD} - V_{t}$$

4: DC and Transient Response

$$\frac{V_{in}(t) = u(t - t_0)V_{DD}}{V_{out}(t < t_0) = V_{DD}}$$

$$\frac{dV_{out}(t)}{dt} = -\frac{I_{dsn}(t)}{C_{load}}$$

$$\frac{d}{dt} = \frac{\int_{0}^{\beta} (V_{DD} - V)^2}{V_{out} > V_{DD} - V_t}$$

$$\frac{\partial}{\partial t} (V_{DD} - V_t - \frac{V_{out}(t)}{2})V_{out}(t) \quad V_{out} < V_{DD} - V_t$$

1

Delay Definitions

- t_{pdr}:
- t_{pdf}:
- t_{pd}:
- t_r
- **t**_f: fall time

-

Delay Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing V_{DD}/2
- t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- t_{pd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions

- **t**_{cdr}: rising contamination delay
 - From input to rising output crossing V_{DD}/2
- t_{cdf}: falling contamination delay
 - From input to falling output crossing V_{DD}/2
- t_{cd}: average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

EE 447 VLSI Design4: DC and Transient Response

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width

Resistance inversely proportional to width

 A 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_{i}$$

$$= R_{1}C_{1} + (R_{1} + R_{2})C_{2} + \dots + (R_{1} + R_{2} + \dots + R_{N})C_{N}$$

$$R_{1} \quad R_{2} \quad R_{3} \quad R_{N}$$

$$C_{1} \quad C_{2} \quad C_{3} \quad C_{N}$$

 Estimate worst-case rising and falling delay of 2-input NAND driving h identical gates.

$$R/2 = \begin{array}{c|c} x & R/2 & Y \\ \hline & 2C & -(6+4h)C \end{array}$$

1

Delay Components

- Delay has two parts
 - Parasitic delay
 - 6 or 7 RC
 - Independent of load
 - Effort delay
 - 4h RC
 - Proportional to load capacitance

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If both inputs fall simultaneously

- we assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

1

Layout Comparison

Which layout is better?

