VLSI Design

Lecture 3a: Nonideal Transistors

Outline

- Transistor I-V Review
- Nonideal Transistor Behavior
 - Velocity Saturation
 - Channel Length Modulation
 - Body Effect
 - Leakage
 - Temperature Sensitivity
- Process and Environmental Variations
 - Process Corners

Ideal Transistor I-V

Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Ideal nMOS I-V Plot

180 nm TSMC process

Ideal Models
 $\beta = 155(W/L) \ \mu A/V^2$ $V_t = 0.4 \ V$ $V_{DD} = 1.8 \ V$

Simulated nMOS I-V Plot

- 180 nm TSMC process
- BSIM 3v3 SPICE models
- What differs?

Simulated nMOS I-V Plot

 180 nm TSMC process
 BSIM 3v3 SPICE models What differs? 250

 Less ON current 200
 No square law 150
 Current increases 100
 in saturation 50

Velocity Saturation

We assumed carrier velocity is proportional to E-field

• $v = \mu E_{lat} = \mu V_{ds}/L$

At high fields, this ceases to be true

- Carriers scatter off atoms
- Velocity reaches v_{sat}
 - Electrons: 6-10 x 10⁶ cm/s
 - Holes: 4-8 x 10⁶ cm/s
- Better model

$$v = \frac{\mu E_{\text{lat}}}{1 + \frac{E_{\text{lat}}}{E_{\text{sat}}}} \Longrightarrow v_{\text{sat}} = \mu E_{\text{sat}}$$

Vel Sat I-V Effects

Ideal transistor ON current increases with V_{DD}²

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_{t})^{2}}{2} = \frac{\beta}{2} (V_{gs} - V_{t})^{2}$$

Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{\rm ox} W \left(V_{gs} - V_t \right) v_{\rm max}$$

Real transistors are partially velocity saturated

- Approximate with α-power law model
- $\blacksquare I_{ds} \propto V_{DD}^{\alpha}$
- 1 < α < 2 determined empirically</p>

α -Power Model

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} & V_{dsat} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} & V_{dsat} \\ \end{cases}$$

$$I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$$
$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

Channel Length Modulation

- Reverse-biased p-n junctions form a *depletion* region
 - Region between n and p with no carriers
 - Width of depletion L_d region grows with reverse bias

$$L_{eff} = L - L_d$$

- Shorter L_{eff} gives more current Source
 - I_{ds} increases with V_{ds}
 - Even in saturation

Chan Length Mod I-V

 λ = channel length modulation coefficient

- not feature size
- Empirically fit to I-V characteristics

Body Effect

- V_t: gate voltage necessary to invert channel
- Increases if source voltage increases because source is connected to the channel
- Increase in V_t with V_s is called the body effect

Body Effect Model

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}}\right)$$

- $\phi_{s} = surface \ potential \ at \ threshold$ $\phi_{s} = 2v_{T} \ln \frac{N_{A}}{n_{i}}$
 - Depends on doping level N_A
 - And intrinsic carrier concentration n_i
- $\gamma = body$ effect coefficient

$$\gamma = \frac{t_{\rm ox}}{\varepsilon_{\rm ox}} \sqrt{2q\varepsilon_{\rm si}N_A} = \frac{\sqrt{2q\varepsilon_{\rm si}N_A}}{C_{\rm ox}}$$

OFF Transistor Behavior

- What about current in cutoff?
- Simulated results
- What differs?
 - Current doesn't go to 0 in cutoff

Leakage Sources

- Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
- Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultrathin gate dielectric
 - Subthreshold leakage is the biggest source in modern transistors

Subthreshold Leakage

Subthreshold leakage exponential with V_{as}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right) \qquad \qquad I_{ds0} = \beta v_T^2 e^{1.8}$$

n is process dependent, typically 1.4-1.5

DIBL

Drain-Induced Barrier Lowering
 Drain voltage also affect V_t

 $V_t' = V_t - \eta V_{ds}$

High drain voltage causes subthreshold leakage to _____.

DIBL

Drain-Induced Barrier Lowering
 Drain voltage also affect V_t
 V'_t = V_t - \eta V_{ds}

High drain voltage causes subthreshold leakage to increase.

Junction Leakage

- Reverse-biased p-n junctions have some leakage $I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$
- I_s depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/μm²

- Carriers may tunnel thorough very thin gate oxides
- Predicted tunneling current (from [Song01])

- Negligible for older processes
- May soon be critically important

Temperature Sensitivity

- Increasing temperature
 - Reduces mobility
 - Reduces V_t
- I_{ON} decreases with temperature
- I_{OFF} increases with temperature

So What?

- So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

Parameter Variation

Transistors have uncertainty in parameters

- Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
- Vary around typical (T) values
- Fast (F)
 - L_{eff}: _____
 V_t: _____
 - t_{ox}: _____
- Slow (S): opposite
- Not all parameters are independent for nMOS and pMOS

Parameter Variation

Transistors have uncertainty in parameters

- Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
- Vary around typical (T) values
- Fast (F)
 - L_{eff}: short
 - V_t : low
 - t_{ox}: thin
- Slow (S): opposite
- Not all parameters are independent for nMOS and pMOS

Environmental Variation

- V_{DD} and T also vary in time and space
- Fast:
 - V_{DD}: _____
 T: _____

Corner	Voltage	Temperature	
F			
Т	1.8	70 C	
S			

Environmental Variation

- V_{DD} and T also vary in time and space
- Fast:
 - V_{DD}: high
 - T: Iow

Corner	Voltage	Temperature	
F	1.98	0 C	
Т	1.8	70 C	
S	1.62	125 C	

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time				
Power				
Subthrehold				
leakage				
Pseudo-nMOS				

Important Corners

Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	S
Power	F	F	F	F
Subthrehold	F	F	F	S
leakage				
Pseudo-nMOS	S	F	?	?