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Ideal Transistor I-V

Shockley 15t order transistor models
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Ideal nMOS I-V Plot

180 nm TSMC process
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Simulated nMOS I-V Plot

180 nm TSMC process
BSIM 3v3 SPICE models
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Simulated nMOS I-V Plot

180 nm TSMC process

BSIM 3v3 SPICE moldcsl(%s
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Velocity Saturation

We assumed carrier velocity is proportional to E-field
V= HEIat = HVds/L
At high fields, this ceases to be true

Carriers scatter off atoms
Velocity reaches v

sat
Electrons: 6-10 x 10% cm/s

Holes: 4-8 x 108 cm/s ,
Better model Vel 2|
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Vel Sat I-V Effects

Ideal transistor ON current increases with Vgp?

2
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Velocity-saturated ON current increases with Vp

Ids = CoxW (Vgs _Vt )V

max

Real transistors are partially velocity saturated
Approximate with a-power law model
lys ¢ Vpp*
1 < a <2 determined empirically



a-Power Model
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Channel Length Modulation

Reverse-biased p-n junctions form a depletion
region

Region between n and p with no carriers

Width of depletion L, region grows with reverse bias

Ler = L — Ly
Shorter L. gives more current e o oan
. increases with V. T 7
— Even in saturation

+ +
k %
eff




Chan Length Mod I-V
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Body Effect

V,: gate voltage necessary to invert channel

ncreases If source voltage increases
pecause source Is connected to the channel

ncrease in V, with V. is called the body effect




Body Effect Model

Vi =V +7/(\/¢s +Vg, _\/¢73)

¢, = surface potential at threshold

¢s :2VT mﬁ

Depends on doping level N,
And Intrinsic carrier concentration n,

Y = body effect coefficient
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OFF Transistor Behavior

What about current in cutoff?

Simulated results

What differs?

Current doesn’t go
to O in cutoff
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Leakage Sources

Subthreshold conduction

Transistors can’t abruptly turn ON or OFF
Junction leakage

Reverse-biased PN junction diode current
Gate leakage

Tunneling through ultrathin gate dielectric

Subthreshold leakage is the biggest source In
modern transistors



Subthreshold Leakage

Subthreshold leakage exponential with V

VeV Vs
. 2 1.8
l,=l,e™ |[1-¢e" o = PVre

n Is process dependent, typically 1.4-1.5



DIBL

Drain-Induced Barrier Lowering
Drain voltage also affect V,

Vt’ :Vt o 77Vds

High drain voltage causes subthreshold
leakage to




DIBL

Drain-Induced Barrier Lowering
Drain voltage also affect V,

Vt’ :Vt o 77Vds

High drain voltage causes subthreshold
leakage to increase.



Junction Leakage

Reverse-biased p-n junctions have some
leakage v
[

e'm —1

|, depends on doping levels

And area and perimeter of diffusion regions
Typically < 1 fA/um?

n well
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Gate Leakage

Carriers may tunnel thorough very thin gate oxides
Predicted tunneling current (from [Song01])

109,
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Negligible for older processes Voo

May soon be critically important



Temperature Sensitivity

Increasing temperature
Reduces mobility
Reduces V,

lon with temperature
lorF with temperature




Temperature Sensitivity

Increasing temperature
Reduces mobility
Reduces V,

lon decreases with temperature
loer INCreases with temperature




So What?

So what If transistors are not ideal?
They still behave like switches.

But these effects matter for...
Supply voltage choice
Logical effort
Quiescent power consumption
Pass transistors
Temperature of operation



Parameter Variation

Transistors have uncertainty in parameters

Process: L, V,, t,, of NMOS and pMOS
Vary around typical (T) values
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nMOS
Not all parameters are independent

for nMOS and pMOS



Parameter Variation

Transistors have uncertainty in parameters
Process: L, V,, t,, of NMOS and pMOS
Vary around typical (T) values

Fast (F) .

SF e

L. short " r o

V. low s o

t . thin JE—
Slow (S): opposite ’

fast
nMOS

Not all parameters are independsgnt
for nMOS and pMOS



Environmental Variation

Vpp and T also vary in time and space
Fast:

Vpp:
T
Corner Voltage Temperature
F
T 1.8 70 C
S




Environmental Variation

Vpp and T also vary in time and space
Fast:

Vpp: high
T. low
Corner Voltage Temperature
F 1.98 0C
T 1.8 70C
S 1.62 125 C




Process Corners

Process corners describe worst case
variations
If a design works in all corners, it will probably
work for any variation.
Describe corner with four letters (T, F, S)

NMOS speed
PMOS speed
Voltage

Temperature



Important Corners

Some critical simulation corners include

Purpose nMOS pPMOS Vo Temp

Cycle time

Power

Subthrehold
leakage

Pseudo-nMOS




Important Corners

Some critical simulation corners include

Purpose nMOS pPMOS Vo Temp
Cycle time S S S S
Power F F F F
Subthrehold F F F S
leakage

Pseudo-nMOS | S F ? ?
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