EE 447 VLSI Design

Lecture 7: Combinational Circuits

Outline

- Bubble Pushing
- Compound Gates
- Logical Effort Example
- Input Ordering
- Asymmetric Gates
- Skewed Gates
- Best P/N ratio

Example 1

```
assign y = s ? d1 : d0;
endmodule
```

1) Sketch a design using AND, OR, and NOT gates.

Example 1

endmodule

1) Sketch a design using AND, OR, and NOT gates.

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
 - Remember DeMorgan's Law

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

Compound Gates

Logical Effort of compound gates

Compound Gates

Logical Effort of compound gates unit inverter AOI21 AOI22 Complex AOI $Y = \overline{A}$ $Y = \overline{AgB + C}$ $Y = \overline{AgB + CgD}$ Y = Ag(B + C) + DgED Ε А B C В A Y Y В 4 B В -46 4 D C ⊸ 6 А D----6 Е в Е 2 D D -12 В $g_{A} = 5/3$ $g_{A} = 6/3$ $g_{A} = 6/3$ $g_{A} = 3/3$ p = 3/3 $g_{\rm B} = 6/3$ $g_{B} = 6/3$ $g_{B} = 8/3$ $g_{c} = 5/3$ $g_{\rm C} = 6/3$ $g_{c} = 8/3$ p = 7/3 $g_{D} = 6/3$ $g_{D} = 8/3$

p = 12/3

g_E = 8/3 p = 16/3

Example 4

The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

Example 4

The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

H = 160 / 16 = 10 B = 1 N = 2

NAND Solution

NAND Solution

$$P = 2 + 2 = 4$$

$$G = (4/3)g(4/3) = 16/9$$

$$F = GBH = 160/9$$

$$\hat{f} = \sqrt[N]{F} = 4.2$$

$$D = N\hat{f} + P = 12.4\tau$$

Compound Solution

Compound Solution

- P = 4 + 1 = 5
- G = (6/3)g(1) = 2
- F = GBH = 20

$$\hat{f} = \sqrt[N]{F} = 4.5$$
$$D = N\hat{f} + P = 14\tau$$

Example 5

Annotate your designs with transistor sizes that achieve this delay.

Example 5

Annotate your designs with transistor sizes that achieve this delay.

16 160 * 1 / 4.5 = 36

Input Order

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling
 - If A arrives latest?
 - If B arrives latest?

Input Order

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling
 - If A arrives latest? 2τ
 - If B arrives latest? 2.33τ

Inner & Outer Inputs

- Outer input is closest to rail (B)
- Inner input is closest to output (A)
- If input arrival time is known
 - Connect latest input to inner terminal

2

B

2

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - So total resistance is same
- **g**_A =
- **g**_B =
- $g_{total} = g_A + g_B =$
- Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - So total resistance is same
- g_A = 10/9
- g_B = 2
 - $g_{total} = g_A + g_B = 28/9$
 - Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

Symmetric Gates

Inputs can be made perfectly symmetric

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

- g_u =
- g_d =

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
 Downsize noncritical nMOS transistor

Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

$$g_u = 2.5 / 3 = 5/6$$

•
$$g_d = 2.5 / 1.5 = 5/3$$

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
 HI-skew gates favor rising output (small nMOS)
 LO-skew gates favor falling output (small pMOS)
 Logical effort is smaller for favored direction
 But larger for the other direction

Catalog of Skewed Gates

Catalog of Skewed Gates

Catalog of Skewed Gates

Asymmetric Skew

- Combine asymmetric and skewed gates
 - Downsize noncritical transistor on unimportant input
 - Reduces parasitic delay for critical input

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance ($\mu = 2-3$ for an inverter).
- Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter A
 - t_{pdf} =
 - t_{pdr} =
 - t_{pd} =
 - Differentiate t_{pd} w.r.t. P
 - Least delay for P =

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance (μ = 2-3 for an inverter).
- Alternative: choose ratio for least average delay

Ex: inverter

Delay driving identical inverter

$$t_{pdr} = (P+1)(\mu/P)$$

- $t_{pd} = (P+1)(1+\mu/P)/2 = (P+1+\mu+\mu/P)/2$
- Differentiate t_{pd} w.r.t.P
 Least delay for P = $\sqrt{\mu}$

P/N Ratios

- In general, best P/N ratio is sqrt of equal delay ratio.
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

P/N Ratios

- In general, best P/N ratio is sqrt of that giving equal delay.
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

Observations

For speed:

- NAND vs. NOR
- Many simple stages vs. fewer high fan-in stages
- Latest-arriving input
- For area and power:
 - Many simple stages vs. fewer high fan-in stages