EE 447
 VLSI Design

Lecture 7:
Combinational Circuits

Outline

- Bubble Pushing
- Compound Gates
- Logical Effort Example
- Input Ordering
- Asymmetric Gates
- Skewed Gates
- Best P/N ratio

Example 1

$$
\begin{gathered}
\text { module } \operatorname{mux}(i n p u t \quad s, d 0, d 1, \\
\text { output } y) ;
\end{gathered}
$$

assign y = s ? d1 : d0;
endmodule

1) Sketch a design using AND, OR, and NOT gates.

Example 1

module mux(input $s, d 0, d 1$, output y);
assign y = s ? d1 : d0;
endmodule

1) Sketch a design using AND, OR, and NOT gates.

Example 2

2) Sketch a design using NAND, NOR, and NOT gates. Assume $\sim S$ is available.

Example 2

2) Sketch a design using NAND, NOR, and NOT gates. Assume $\sim S$ is available.

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic

- Remember DeMorgan's Law
(a)

(b)

(c)

(d)

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume $\sim S$ is available.

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume $\sim S$ is available.
$\left.\begin{array}{c}D 0 \\ \bar{S}- \\ D 1 \\ S\end{array}\right) Y$

Compound Gates

- Logical Effort of compound gates
unit inverter
$Y=\bar{A}$

$Y=\frac{\mathrm{AO} 122}{\overline{A g B+C g D}}$
$Y=\frac{\text { Complex AOI }}{A g(B+C)+D g}$
$A->-Y$

$$
\begin{aligned}
& g_{A}=3 / 3 \\
& p=3 / 3
\end{aligned}
$$

$$
\begin{aligned}
& g_{A}=6 / 3 \\
& g_{B}=6 / 3 \\
& g_{C}=5 / 3 \\
& p=7 / 3
\end{aligned}
$$

$$
\begin{aligned}
& g_{A}= \\
& g_{B}= \\
& g_{C}= \\
& g_{D}= \\
& \mathrm{p}=
\end{aligned}
$$

$$
\begin{array}{lc}
B-\sqrt{6} & \\
C-\sqrt{6} & A-\sqrt{3} \\
D-\sqrt{6} & E-\sqrt{6} \\
E-\sqrt{2} & A-\sqrt{2} \\
D-12 & B-\sqrt{2} \\
C-\sqrt{2}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{A}}= \\
& \mathrm{g}_{\mathrm{B}}= \\
& \mathrm{g}_{\mathrm{C}}= \\
& \mathrm{g}_{\mathrm{D}}= \\
& \mathrm{g}_{\mathrm{E}}= \\
& \mathrm{p}=
\end{aligned}
$$

Compound Gates

- Logical Effort of compound gates
unit inverter
$Y=\bar{A}$
$Y=\overline{\mathrm{AOL} 21} \overline{A g B+C}$
$Y=\frac{\mathrm{AOI} 22}{A g B+C g D}$
$Y=\frac{\text { Complex AOI }}{A g(B+C)+D g}$
$A->-Y$

$$
\begin{array}{lc}
\mathrm{B}-\sqrt{6} & \\
\mathrm{C}-\sqrt{6} & \mathrm{~A}-\sqrt{3} \\
\mathrm{D}-\sqrt{6} & \mathrm{E}-\sqrt{6} \\
\mathrm{E}-\sqrt{2} & \mathrm{~A}-\sqrt{2} \\
\mathrm{D}-\sqrt{2} & \mathrm{~B}-\sqrt{2} \\
\mathrm{C}-\sqrt{2}
\end{array}
$$

$$
\begin{aligned}
& g_{A}=6 / 3 \\
& g_{B}=6 / 3 \\
& g_{C}=6 / 3 \\
& g_{D}=6 / 3 \\
& p=12 / 3
\end{aligned}
$$

$$
\begin{aligned}
& g_{A}=5 / 3 \\
& \mathrm{~g}_{\mathrm{B}}=8 / 3 \\
& \mathrm{~g}_{\mathrm{C}}=8 / 3 \\
& \mathrm{~g}_{\mathrm{D}}=8 / 3 \\
& \mathrm{~g}_{\mathrm{E}}=8 / 3 \\
& \mathrm{p}=16 / 3
\end{aligned}
$$

Example 4

The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

Example 4

The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs.

NAND Solution

NAND Solution

$$
\begin{aligned}
& P=2+2=4 \\
& G=(4 / 3) g(4 / 3)=16 / 9 \\
& F=G B H=160 / 9 \\
& \hat{f}=\sqrt[N]{F}=4.2 \\
& D=N \hat{f}+P=12.4 \tau
\end{aligned}
$$

Compound Solution

Compound Solution

$$
\begin{aligned}
& P=4+1=5 \\
& G=(6 / 3) g(1)=2 \\
& F=G B H=20 \\
& \hat{f}=\sqrt[N]{F}=4.5 \\
& D=N \hat{f}+P=14 \tau
\end{aligned}
$$

Example 5

Annotate your designs with transistor sizes that achieve this delay.

Example 5

Annotate your designs with transistor sizes that achieve this delay.

16

Input Order

- Our parasitic delay model was too simple
- Calculate parasitic delay for Y falling
- If A arrives latest?
- If B arrives latest?

Input Order

- Our parasitic delay model was too simple
- Calculate parasitic delay for Y falling
- If A arrives latest? 2τ
- If B arrives latest? 2.33τ

Inner \& Outer Inputs

- Outer input is closest to rail (B)
\square Inner input is closest to output (A)
- If input arrival time is known
- Connect latest input to inner terminal

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
- Use smaller transistor on A (less capacitance)
- Boost size of noncritical input

- So total resistance is same
- $g_{\mathrm{A}}=$
- $g_{B}=$
- $g_{\text {total }}=g_{A}+g_{B}=$

- Asymmetric gate approaches $g=1$ on critical input
- But total logical effort goes up

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
- Use smaller transistor on A (less capacitance)
- Boost size of noncritical input

- So total resistance is same
- $g_{A}=10 / 9$
- $g_{B}=2$
- $g_{\text {total }}=g_{A}+g_{B}=28 / 9$

- Asymmetric gate approaches $g=1$ on critical input
- But total logical effort goes up

Symmetric Gates

Inputs can be made perfectly symmetric

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
- Downsize noncritical nMOS transistor

- Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
- $g_{u}=$
- $g_{d}=$

Skewed Gates

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
- Downsize noncritical nMOS transistor

Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

- $g_{u}=2.5 / 3=5 / 6$
- $g_{d}=2.5 / 1.5=5 / 3$

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
- HI-skew gates favor rising output (small nMOS)
- LO-skew gates favor falling output (small pMOS)
- Logical effort is smaller for favored direction
- But larger for the other direction

Catalog of Skewed Gates

Inverter
unskewed

LO-skew

NAND2

NOR2

$g_{\mathrm{u}}=$
$\mathrm{g}_{\mathrm{d}}=$
$\mathrm{g}_{\text {avg }}=$

Catalog of Skewed Gates

Inverter
unskewed

NAND2

$g_{u}=$
$g_{d}=$
$g_{a v g}=$

NOR2

Catalog of Skewed Gates

Inverter
unskewed

LO-skew

NAND2

NOR2

Asymmetric Skew

Combine asymmetric and skewed gates

- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance ($\mu=2-3$ for an inverter).
- Alternative: choose ratio for least average delay
- Ex: inverter
- Delay driving identical inverter
- $\mathrm{t}_{\mathrm{pdf}}=$

- $\mathrm{t}_{\mathrm{pdr}}=$
- $\mathrm{t}_{\mathrm{pd}}=$
- Differentiate $t_{p d}$ w.r.t. P
- Least delay for $\mathrm{P}=$

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance ($\mu=2-3$ for an inverter).
- Alternative: choose ratio for least average delay
- Ex: inverter
- Delay driving identical inverter
$-\mathrm{t}_{\mathrm{pdf}}=(\mathrm{P}+1)$
$-t_{\text {pdr }}=(P+1)(\mu / P)$
- $\mathrm{t}_{\mathrm{pd}}=(\mathrm{P}+1)(1+\mu / \mathrm{P}) / 2=(\mathrm{P}+1+\mu+\mu / \mathrm{P}) / 2$
- Differentiate $t_{p d}$ w.r.t. P
- Least delay for $\mathrm{P}=\sqrt{ } \mu$

P/N Ratios

- In general, best P/N ratio is sqrt of equal delay ratio.
- Only improves average delay slightly for inverters
- But significantly decreases area and power

Inverter

NAND2

P/N Ratios

- In general, best P / N ratio is sqrt of that giving equal delay.
- Only improves average delay slightly for inverters
- But significantly decreases area and power

Observations

- For speed:
- NAND vs. NOR
- Many simple stages vs. fewer high fan-in stages
- Latest-arriving input
- For area and power:
- Many simple stages vs. fewer high fan-in stages

