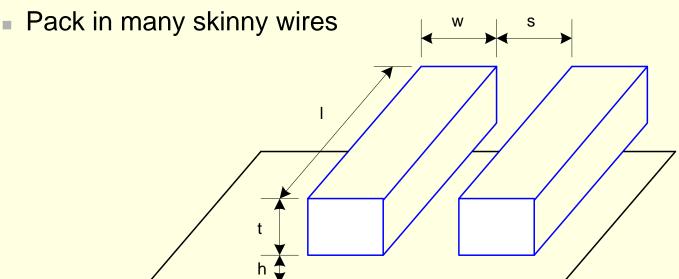
EE 447 VLSI Design

Lecture 5: Wires

Outline

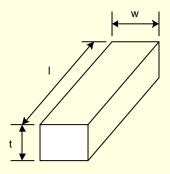

- Introduction
- Wire Resistance
- Wire Capacitance
- Wire RC Delay
- Crosstalk
- Wire Engineering
- Repeaters

Introduction

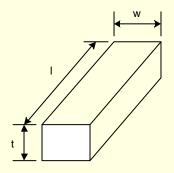
- Chips are mostly made of wires called interconnect
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Wire Geometry

- \blacksquare Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR << 1</p>
 - Modern processes have AR ≈ 2

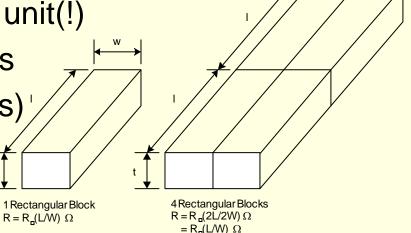

Layer Stack

- AMI 0.6 μm process has 3 metal layers
- Modern processes use 6-10+ metal layers


Example:	Layer	T (nm)	W (nm)	S (nm)	AR	
Intel 180 nm process	6	1720	860	860	2.0	
M1: thin, narrow (< 3λ)		1000				
High density cells	5	1600	800	800	2.0	
M2-M4: thicker		1000				
For longer wires	4	1080	540	540	2.0	
M5-M6: thickest	3	700 700	320	320	2.2	
■ For V _{DD} , GND, clk	2	700 700	320	320	2.2	
	1	700 480	250	250	1.9	
		800				- -

Substrate

Wire Resistance


Wire Resistance

Wire Resistance

 $\rho = resistivity (\Omega^* m)$ $R = \frac{\rho}{l} = R_{\square} \frac{l}{l}$

- \blacksquare R_{\square} = sheet resistance (Ω/\square)
 - □ is a dimensionless unit(!)
- Count number of squares
 - \blacksquare R = R_{\pi} * (# of squares)

Choice of Metals

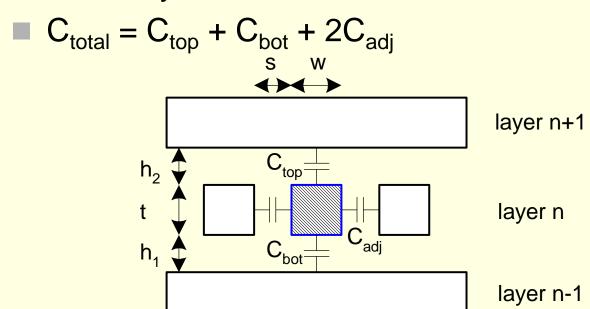
- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

Typical sheet resistances in 180 nm process

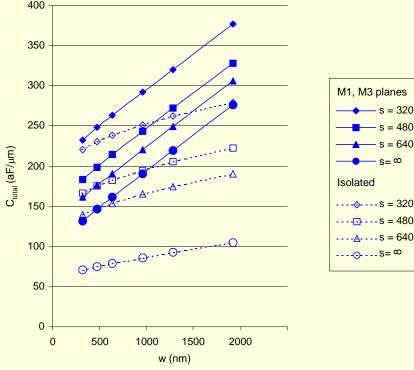
Layer	Sheet Resistance (Ω/□)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02


Contacts Resistance

- \blacksquare Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below

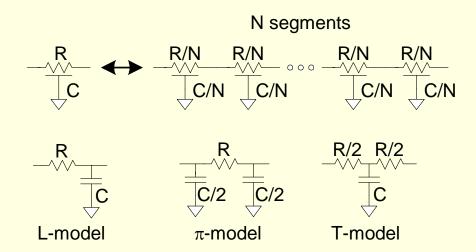


Capacitance Trends

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\epsilon = k\epsilon_0$
- $\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
- $k = 3.9 \text{ for SiO}_2$
- Processes are starting to use low-k dielectrics
 - $\mathbf{k} \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

- Typical wires have ~ 0.2 fF/μm
 - Compare to 2 fF/μm for gate capacitance



Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models

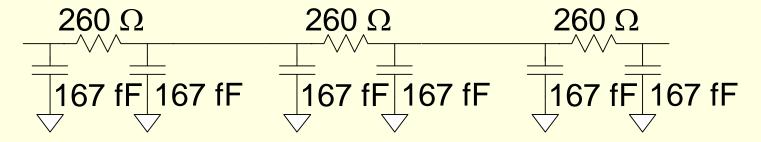
- Wires are a distributed system
 - Approximate with lumped element models

- \blacksquare 3-segment π -model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
- Construct a 3-segment π-model
 - R_□ =
 - C_{permicron} =

Example

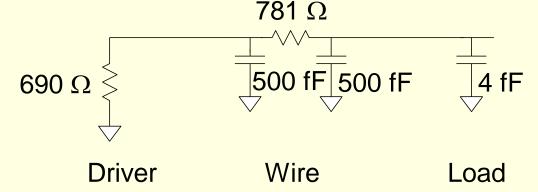

- Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
- Construct a 3-segment π-model

$$\blacksquare$$
 R _{\square} = 0.05 Ω / \square

$$=> R = 781 \Omega$$

$$C_{permicron} = 0.2 \text{ fF/}\mu\text{m}$$

$$=> C = 1 pF$$

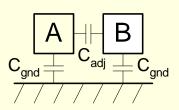


Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - R = 2.5 k Ω *µm for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

Wire RC Delay

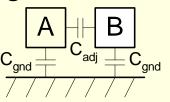
- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - R = 2.5 k Ω *µm for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS



Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

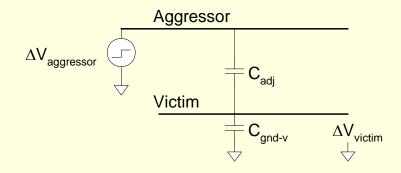
Crosstalk Delay


- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adi} depends on behavior of neighbors
 - Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant			
Switching with A			
Switching opposite A			

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adi} depends on behavior of neighbors
 - Miller effect

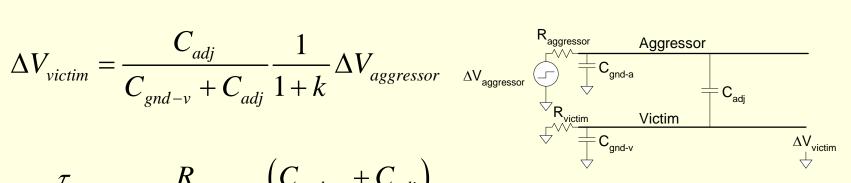


В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C_gnd	0
Switching opposite A	2V _{DD}	C _{gnd} + 2 C _{adj}	2

Crosstalk Noise

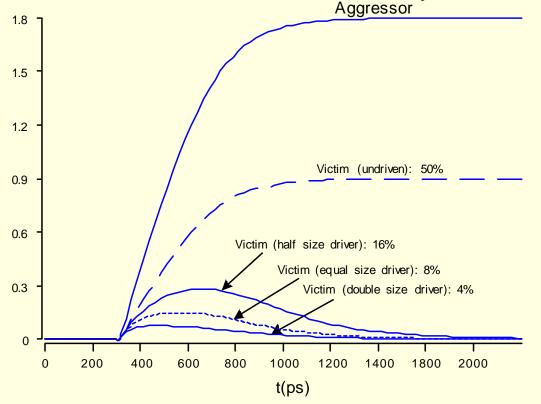
- Crosstalk causes noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$



Driven Victims

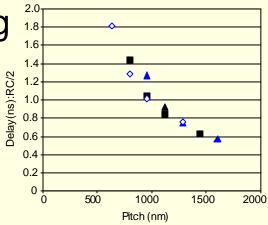
- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

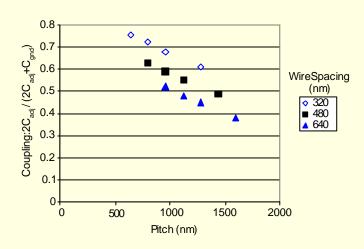

$$\Delta V_{\textit{victim}} = \frac{C_{\textit{adj}}}{C_{\textit{gnd-v}} + C_{\textit{adj}}} \frac{1}{1+k} \Delta V_{\textit{aggressor}}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

Coupling Waveforms

Simulated coupling for C_{adj} = C_{victim}

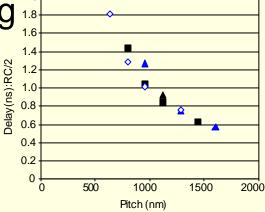

Noise Implications

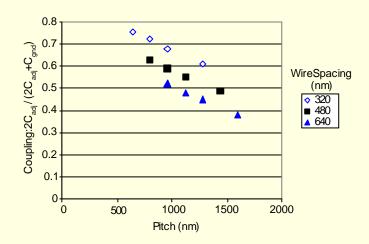

- So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

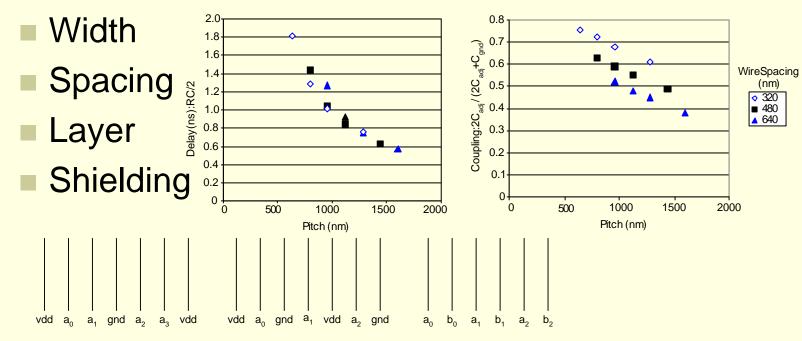
- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width

Spacing





- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width



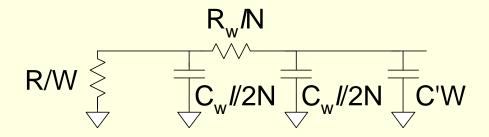
Layer

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

Repeaters

- R and C are proportional to I
- RC delay is proportional to P
 - Unacceptably great for long wires

Repeaters


- R and C are proportional to I
- RC delay is proportional to P
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length I/N
 - Wire Capaitance C_w*//N, Resistance R_w*//N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w*I, Resistance R_w*I
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Results

- Write equation for Elmore Delay
 - Differentiate with respect to W and N
 - Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{1} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_wC_w}$$

$$W = \sqrt{\frac{RC_w}{R_w C'}}$$

~60-80 ps/mm in 180 nm process