EE 447 VLSI Design

Lecture 5: Logical Effort

Outline

- Introduction
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?
- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Express delays in process-independent unit $d = \frac{d_{abs}}{\tau}$ $\approx 12 \text{ ps in 180 nm process}$

40 ps in 0.6 μ m process

- Express delays in process-independent unit $d = \frac{d_{abs}}{\tau}$
- Delay has two components
 d = f + p

- Express delays in process-independent unit $d = \frac{d_{abs}}{\tau}$
- Delay has two components d = f + p
- Effort delay f = gh (a.k.a. stage effort)
 Again has two components

Express delays in process-independent unit

$$d = \frac{a_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

L

Effort delay f = gh (a.k.a. stage effort)

Again has two components

- g: logical effort
 - Measures relative ability of gate to deliver current
 - $g \equiv 1$ for inverter

Express delays in process-independent unit

$$d = \frac{a_{abs}}{\tau}$$

Delay has two components d = f + p

Effort delay f = gh (a.k.a. stage effort)

Again has two components

- *h*: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout

- Express delays in process-independent unit $d = \frac{d_{abs}}{\tau}$
- Delay has two components d = f + p
- Parasitic delay p
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

Delay Plots

EE 4475V40994aDE#91gn

Delay Plots

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.

EE 4475V40994aDEesign

Catalog of Gates

Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4 EE 4	6, 12, 46.4094915#910	8, 16, 16, 8	

Catalog of Gates

Parasitic delay of common gates

In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort:g =Electrical Effort:h =Parasitic Delay:p =Stage Delay:d =Frequency: $f_{osc} =$

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort:g = 1Electrical Effort:h = 1Parasitic Delay:p = 1Stage Delay:d = 2Frequency: $f_{osc} = 1/(2^*N^*d) = 1/4N$

31 stage ring oscillator in 0.6 μm process has frequency of ~ 200 MHz

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

- Logical Effort: g =
- Electrical Effort: h =
- Parasitic Delay: p =
- Stage Delay: d =

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

- Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5

The FO4 delay is about 200 ps in 0.6 μm process 60 ps in a 180 nm process f/3 ns in an *f* μm process

Multistage Logic Networks

Logical effort generalizes to multistage networks
 Path Logical Effort $G = \prod g_i$ Path Electrical Effort $H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$ Path Effort $F = \prod f_i = \prod g_i h_i$

Multistage Logic Networks

Logical effort generalizes to multistage networks
 Path Logical Effort $G = \prod g_i$

Path Electrical Effort
$$H = \frac{C_{out-path}}{C_{in-path}}$$
 Path Effort $F = \prod f_i = \prod g_i h_i$

Can we write F = GH?

Paths that Branch

No! Consider paths that branch:

Paths that Branch

No! Consider paths that branch:

- G = 1 H = 90 / 5 = 18
- GH = 18

$$h_1 = (15 + 15) / 5 = 6$$

$$h_2 = 90 / 15 = 6$$

 $F = g_1 g_2 h_1 h_2 = 36 = 2GH$

5

15

15

90

90

Branching Effort

Introduce branching effort
 Accounts for branching between stages in path
 $b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$ $B = \prod b_i$ Note:
 $\prod h_i = BH$

Now we compute the path effortF = GBH

EE 4475V49991aDferstgn

Multistage Delays

- Path Effort Delay $D_F = \sum f_i$
- Path Parasitic Delay

$$P = \sum p_i$$

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

This is a key result of logical effort

- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$
$$\Rightarrow C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

Select gate sizes x and y for least delay from A to B

Logical Effort $G = (4/2)^2$ Electrical Effort $H = 45^2$ Branching Effort $B = 3^{*2}$ Path Effortf = 3 f =

G = $(4/3)^*(5/3)^*(5/3) = 100/27$ H = 45/8 B = 3 * 2 = 6 $\hat{f} = \sqrt[3]{F} = \frac{3}{2}F = 5$ P = 2 + 3 + 2 = 7

D = 3*5 + 7 = 22 = 4.4 FO4

EE 4475V40599aDF#Stgn

Work backward for sizes

Work backward for sizes y = 45 * (5/3) / 5 = 15 $x = (15^{*}2) * (5/3) / 5 = 10$ 45 A −P: 4 P: 4 В N: 6 45

Best Number of Stages

How many stages should a path use?

- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

Best Number of Stages

How many stages should a path use?

- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

Derivation

Consider adding inverters to end of path How many give least delay? $D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$ $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$

Define best stage effort $ho = F^{\frac{1}{N}}$

$$p_{inv} + \rho \left(1 - \ln \rho \right) = 0$$

Best Stage Effort

$$p_{inv} + \rho (1 - \ln \rho) = 0$$
 has no closed-form solution

- Neglecting parasitics (p_{inv} = 0), we find ρ = 2.718 (e)
- For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

How sensitive is delay to using exactly the best number of stages?

 1.6
 1.51

 1.4
 1.26

- 2.4 < ρ < 6 gives delay within 15% of optimal</p>
 - We can be sloppy!
 - I like ρ = 4

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Number of Stages

Decoder effort is mainly electrical and branching
 Electrical Effort: H =
 Branching Effort: B =

If we neglect logical effort (assume G = 1)
 Path Effort: F =

Number of Stages: N =

Number of Stages

Decoder effort is mainly electrical and branching
 Electrical Effort: H = (32*3) / 10 = 9.6
 Branching Effort: B = 8

If we neglect logical effort (assume G = 1)Path Effort: F = GBH = 76.8

Number of Stages: $N = \log_4 F = 3.1$

Try a 3-stage design

Gate Sizes & Delay

Logical Effort:	G =
Path Effort: F =	
Stage Effort:	$\hat{f} =$
Path Delay:	<i>J</i> –
Gate sizes: z =	D = y =

EE 4475V40994aDE#931gn

Gate Sizes & Delay

Logical Effort: G = 1 * 6/3 * 1 = 2Path Effort: F = GBH = 154Stage Effort: $\hat{f} = F^{1/3} = 5.36$ Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$ Gate sizes: z = 96*1/5.36 = 18 y = 18*2/5.36 = 6.7

EE 4475V40994aDE#991gn

Comparison

Compare many alternatives with a spreadsheet

Design	Ν	G	Ρ	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	Ν
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum_{i=1}^{n} p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

- 1) Compute path effort
- 2) Estimate best number of stages $N = \log_4 F$
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort

F = GBH

6) Find gate sizes

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master