VLSI Design

Circuits & Layout

Outline

- CMOS Gate Design
- Pass Transistors
- CMOS Latches & Flip-Flops
- Standard Cell Layouts
- Stick Diagrams

CMOS Gate Design

A 4-input CMOS NOR gate

Complementary CMOS

Complementary CMOS logic gates nMOS pull-down network pMOS pull-up network network a.k.a. static CMOS inputs pull-down

pMOS pull-up

nMOS

network

 \forall

output

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

- nMOS: 1 = ON
- pMOS: 0 = ON
- Series: both must be ON
- Parallel: either can be ON

Conduction Complement

Complementary CMOS gates always produce 0 or 1

Ex: NAND gate

- Series nMOS: Y=0 when both inputs are 1
- Thus Y=1 when either input is 0
- Requires parallel pMOS

Rule of Conduction Complements

- Pull-up network is complement of pull-down
- Parallel -> series, series -> parallel

Compound Gates

- Compound gates can do any inverting function
- Ex: AND-AND-OR-INV (AOI22)
- $Y = \overline{(A \bullet B) + (C \bullet D)}$

Example: O3AI

 $Y = (A + B + C) \bullet D$

Example: O3AI

Pass Transistors

Transistors can be used as switches

Pass Transistors

Transistors can be used as switches

Input g = 1g = 0Output g s ⊸∽⊸d 0 →→→ strong 0 s ____ d g = 1 g = 11 \rightarrow degraded 1 s ⊸⊸⊸d Input g = 0g = 0Output g s___d $0 \rightarrow -$ degraded 0 g = 1 g = 0 \rightarrow strong 1 s-r-d

Signal Strength

- Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus NMOS are best for pull-down network
- Thus PMOS are best for pull-up network

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

Transmission Gates

Pass transistors produce degraded outputs
Transmission gates pass both 0 and 1 well

Tristates

Tristate buffer produces Z when not enabled

EN	А	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y (after several stages, the noise may degrade the signal beyond recognition)

Tristate Inverter

- Tristate inverter produces restored output
- Note however that the Tristate buffer
 - ignores the conduction complement rule because we want a Z output

Tristate Inverter

- Tristate inverter produces restored output
- Note however that the Tristate buffer
 - ignores the conduction complement rule because we want a Z output

Multiplexers

2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	Х	0	
0	Х	1	
1	0	Х	
1	1	Х	

Multiplexers

2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	Х	0	0
0	Х	1	1
1	0	Х	0
1	1	Х	1

Gate-Level Mux Design

 $Y = SD_1 + SD_0$ (too many transistors)

How many transistors are needed?

Gate-Level Mux Design

 $Y = SD_1 + SD_0$ (too many transistors)

How many transistors are needed? 20

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

Inverting multiplexer

- Use compound AOI22
- Or pair of tristate inverters
- Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

4:1 mux chooses one of 4 inputs using two selects

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- When CLK = 1, latch is transparent
 - Q follows D (a buffer with a Delay)
- When CLK = 0, the latch is *opaque*
 - Q holds its last value independent of D
- a.k.a. transparent latch or level-sensitive latch

Multiplexer chooses D or old Q

D Latch Operation

D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, masterslave flip-flop

D Flip-flop Design

Built from master and slave D latches

A "negative level-sensitive" latch

A "positive level-sensitive" latch

D Flip-flop Operation

Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires Early
 - Sees first flip-flop change and captures its result
 - Called hold-time failure or race condition

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- Good for safe design
 - Industry manages skew more carefully instead

Gate Layout

Layout can be very time consuming

- Design gates to fit together nicely
- Build a library of standard cells
- Must follow a technology rule

Standard cell design methodology

- V_{DD} and GND should abut (standard height)
- Adjacent gates should satisfy design rules
- nMOS at bottom and pMOS at top
- All gates include well and substrate contacts

Example: Inverter

Layout using Electric

Inverter, contd..

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ

NAND3 (using Electric), contd.

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Stick Diagrams

Stick diagrams help plan layout quickly

- Need not be to scale
- Draw with color pencils or dry-erase markers

Wiring Tracks

A *wiring track* is the space required for a wire

• 4 λ width, 4 λ spacing from neighbor = 8 λ pitch

Well spacing

Wells must surround transistors by 6 λ

- Implies 12 λ between opposite transistor flavors
- Leaves room for one wire track

Area Estimation

Estimate area by counting wiring tracks

• Multiply by 8 to express in λ

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

$$Y = (A + B + C) \bullet D$$

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

$$Y = (A + B + C) \bullet D$$

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

 $Y = \overline{(A+B+C) \bullet D}$

