VLSI Design

Circuits \& Layout

Outline

- CMOS Gate Design
- Pass Transistors

CMOS Latches \& Flip-Flops

- Standard Cell Layouts
- Stick Diagrams

CMOS Gate Design

- 4-input CMOS NOR gate

Complementary CMOS

- Complementary CMOS logic gates
- nMOS pull-down network
- pMOS pull-up network
- a.k.a. static CMOS
pMOS
pull-up network
inputs
output
nMOS
pull-down
network

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

nMOS: 1 = ON
pMOS: $0=0 N$

- Series: both must be ON
- Parallel: either can be ON
a
$g 1-1 \zeta$
$g 2-1 \square$
b
(a)

(b)

(c)

(d)

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
- Series nMOS: $\mathrm{Y}=0$ when both inputs are 1
- Thus $Y=1$ when either input is 0
- Requires parallel pMOS

- Rule of Conduction Complements
- Pull-up network is complement of pull-down
- Parallel -> series, series -> parallel

Compound Gates

- Compound gates can do any inverting function
- Ex: AND-AND-OR-INV (AOI22)

$$
Y=\overline{(A \bullet B)+(C \bullet D)}
$$

(a)

(c)

(e)

Example: O3AI

$$
Y=\overline{(A+B+C) \bullet D}
$$

Example: O3AI

$$
Y=\overline{(A+B+C) \bullet D}
$$

Pass Transistors

- Transistors can be used as switches

Pass Transistors

- Transistors can be used as switches

\[

\]

Signal Strength

- Strength of signal
- How close it approximates ideal voltage source
- $V_{D D}$ and GND rails are strongest 1 and 0
- nMOS pass strong 0
- But degraded or weak 1
- pMOS pass strong 1
- But degraded or weak 0
- Thus NMOS are best for pull-down network
- Thus PMOS are best for pull-up network

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

Tristates

- Tristate buffer produces Z when not enabled

EN

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
- Only two transistors
- But nonrestoring
- Noise on A is passed on to Y (after several stages, the noise may degrade the signal beyond recognition)

Tristate Inverter

- Tristate inverter produces restored output
- Note however that the Tristate buffer
- ignores the conduction complement rule because we want a Z output

Tristate Inverter

- Tristate inverter produces restored output
- Note however that the Tristate buffer
- ignores the conduction complement rule because we want a Z output

$$
\begin{aligned}
& \mathrm{EN}=0 \\
& \mathrm{Y}=\mathrm{C} \text { ' }
\end{aligned}
$$

$$
\mathrm{EN}=1
$$

$$
\mathrm{Y}=\overline{\mathrm{A}}
$$

Multiplexers

- 2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	X	0	
0	X	1	
1	0	X	
1	1	X	

D0 -0
D1 -1 $\quad Y$

Multiplexers

- 2:1 multiplexer chooses between two inputs

S	$D 1$	$D 0$	Y
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Gate-Level Mux Design

$Y=S D_{1}+S D_{0}$ (too many transistors)

- How many transistors are needed?

Gate-Level Mux Design

$Y=S D_{1}+\bar{S} D_{0}$ (too many transistors)

- How many transistors are needed? 20

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

Transmission Gate Mux

Nonrestoring mux uses two transmission gates

Only 4 transistors

Inverting Mux

- Inverting multiplexer
- Use compound AOI22
- Or pair of tristate inverters
- Essentially the same thing
\square Noninverting multiplexer adds an inverter

4:1 Multiplexer

4:1 mux chooses one of 4 inputs using two selects

4:1 Multiplexer

4:1 mux chooses one of 4 inputs using two selects

- Two levels of 2:1 muxes
- Or four tristates

D Latch

- When CLK = 1 , latch is transparent
- Q follows D (a buffer with a Delay)
- When CLK = 0 , the latch is opaque
- Q holds its last value independent of D
- a.k.a. transparent latch or level-sensitive latch

D Latch Design

Multiplexer chooses D or old Q

D Latch Operation

CLK

D

Q

D Flip-flop

When CLK rises, D is copied to Q

- At all other times, Q holds its value
a.k.a. positive edge-triggered flip-flop, masterslave flip-flop

CLK

D Flip-flop Design

Built from master and slave D latches

A "negative level-sensitive" latch
A "positive level-sensitive" latch

D Flip-flop Operation

Race Condition

- Back-to-back flops can malfunction from clock skew
- Second flip-flop fires Early
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
- As long as nonoverlap exceeds clock skew
- Good for safe design
- Industry manages skew more carefully instead

Gate Layout

- Layout can be very time consuming
- Design gates to fit together nicely
- Build a library of standard cells
- Must follow a technology rule
- Standard cell design methodology
- $V_{D D}$ and GND should abut (standard height)
- Adjacent gates should satisfy design rules
- nMOS at bottom and pMOS at top
- All gates include well and substrate contacts

Example: Inverter

Layout using Electric

Inverter, contd..

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32λ by 40λ

NAND3 (using Electric), contd.

Stick Diagrams

- Stick diagrams help plan layout quickly
- Need not be to scale
- Draw with color pencils or dry-erase markers

Stick Diagrams

- Stick diagrams help plan layout quickly
- Need not be to scale
- Draw with color pencils or dry-erase markers

Wiring Tracks

- A wiring track is the space required for a wire
-4λ width, 4λ spacing from neighbor $=8 \lambda$ pitch
- Trar

(b)

(a)

Well spacing

- Wells must surround transistors by 6λ
- Implies 12λ between opposite transistor flavors
- Leaves room for one wire track

(a)

(b)

Area Estimation

Estimate area by counting wiring tracks

- Multiply by 8 to express in λ

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

$$
Y=\overline{(A+B+C) \bullet D}
$$

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

$$
Y=\overline{(A+B+C) \bullet D}
$$

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

$$
Y=\overline{(A+B+C) \bullet D}
$$

