EE 211 Lecture 6

Feb. 24, 2006

Topics

- Mid term exam
- Prelab policy
- Pspice Analysis
- Frequency Response

Mid-term Exam

- Closed book, closed notes
- 1 hour, in class
- Bring calculators
- Covers Labs 1-12
- Expect at least one question from each lab
- Short answer format similar to the example— expect 25 questions.

Prelab policy

 We will now begin collecting and grading all prelab materials.

Labs 12-13 Pspice Analysis

- Pspice is a circuit simulator program
- It uses libraries of components to define circuits and simulate them.
- Probe provides graphical output for the results
- Pspice includes transient, dc, transfer function, and other simulations modes

Pspice circuit files

Passive components— R, L and C
The 1st character in a name defines the device type.
The name is followed by the node numbers. The final number is the value of the component.

```
CANG2 610 605 1.0ufd
RANG2 605 0 10kohm
```

*field circuit

*

RF 630 632 0.001; field resistance

LPF 633 634 .2546mH

VF 630 0 .002

Independent Sources

V=voltage source I= current source

Examples of DC, sinusoidal, and pulse voltages.

```
VF 630 0 .002volts

* (offset mag freq td df angle)

VBUSA 200 0 SIN(0 1.414V 60.0 0 0 0)

* initialval finalval delay risetime falltime pulse width period

IPMECH 0 600 pulse (1.0A 0.0A 0 0.01msec 0.01msec 40msec 100msec)
```

The Main circuit for a comparator

```
•The main Program
vi 11 0 sin(0 2 100 0 0)
* op-amp terminals: +in -in +ps -ps out
xOAmp
11 0 14 15 20 LM741/NS
Vcc 14 0 dc +12v
Vee 15 0 dc -12v
Rout 20 0 1kohm
```

•NOTE---- X indicates a call to a subcircuit

```
* Legal Notice: This material is intended for free software support.
* The file may be copied, and distributed; however, reselling the
* material is illegal
* For ordering or technical information on these models, contact:
* National Semiconductor's Customer Response Center
        7:00 A.M.--7:00 P.M. U.S. Central Time
                (800) 272-9959
* For Applications support, contact the Internet address:
* amps-apps@galaxy.nsc.com
*LM741 OPERATIONAL AMPLIFIER MACRO-MODEL
non-inverting input
* connections:
                     inverting input
                       positive power supply
                          negative power supply
                             output
*
.SUBCKT LM741/NS 1 2 99 50 28
```

Transient Analysis

* max step .tran 0.01ms

Tend print delay 50ms 0ms

max print step size

0.01ms

.probe

.end

Frequency Response- Gain vs. freq.

Frequency Response- Gain in db

Low pass filter

The feedback circuit impedance

A parallel RC circuit has an impedance of

$$Z_{p}(s) = \frac{1}{\frac{1}{R_{p}} + sC_{p}} = \frac{K_{p}}{1 + \sqrt[K]{\omega_{p}}}$$

Summary

 We will use Pspice, Labview and the lab bench to investigate low, high and bandpass filters.