#### LECTURE 10

AC Circuits and Sampling Labs

### Schedule Change

- AC Circuits will be Monday and Tuesday
- Sampling Lab will be Wednesday and Thursday

#### Outline— AC Ciruits

- Safety for circuits with >50 volts
- Prelab material
- Lab tests
- Results

#### Basic electrical safety

- Electrical injuries due to tissue heating, nerve system disruption, reflex actions, arc burns.
- 5 ma is the "let go" current
- Path of current through the body is important
- Body impedance is primarily in the skin

## Laboratory Safety Procedures

- Eye safety
  – goggles
- Work only on dead circuits
- Have instructor check circuit before energizing
- Avoid having to reach across hot resistors/hot wires
- No loose jewelry
- Work with one hand

## Theory



### **RL** Load





### Power Triangle





**NEGATIVE** vars flow TO the cap

POSITIVE vars flow FROM the cap

#### Measurements

Measure V (volts), I (amps), and P (watts)

• 
$$Q = (S^2 - P^2)^{1/2}$$



Constant  $V_L$  means constant  $I_L$  and  $P_L$  as  $C_L$  changes

#### Measurement circuit



## Metering circuit



#### Results

- C will generate vars
  –L will consume vars
- If capacitive vars = inductive vars, there will be unity power factor (and minimum source current)
- Further increase in capacitance will create a leading power factor (and current will be larger)

#### Results

- For each operating point—
  - Measure V, I and P
  - Calculate S and
  - Draw power triangle to scale
  - Determine capacitive vars from the source measurement
  - Predict capacitive vars by formula ωCV<sup>2</sup>

## Sampling Lab-- Objectives

- Use shift registers in LabView
- Use continuous sampling to estimate signal characteristics
- Integrate and differentiate signals in real time

# Windowed Data Gathering (what we did previously)



## Continuously sampled signal



### Comparison

- Suppose the sampling theorem dictates a sampling rate of 1khz.
- Suppose you need to have 100 samples to characterize the wave
- In windowed data, you could make a decision no quicker than every 0.1 sec.
- In continuously sampled data, you can make a decision every 1 millisecond.

## Shift Registers







## **Averaging Circuit**



#### We will do...

- Averaging
- Integrating
- Differentiating
- RMS'ing

# Real Time Integration--discretization



## Integration-- summation



#### **Algorithm**

$$y(i) = \sum_{k=0}^{i} x(k)\Delta t = y(i-1) + x(i)\Delta t$$

### What is the integral of a...

• Sine wave?

Square wave?

What is the derivative of these signals?

How would you do a running RMS?