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Abstract

Musiccompositionis a domainwell-suitedfor evolutionary
reinforcementlearning. Insteadof applyingexplicit compo-
sition rules,a neural networkis usedto generatemelodies.
An evolutionaryalgorithmis usedto find a neural network
that maximizesthe chanceof generating good melodies.
Compositionruleson tonality andrhythmare usedasa fit-
nessfunctionfor the evolution. We observethat themodel
learns to generate melodiesaccording to theserules with
interestingvariations.

1 Introduction

SinceLeonardBernstein’s lectureon music and language
in 1973at Harvard, many musicscholarshave worked on
the theoryandpracticeof musicalgrammar[4]. The idea
is to draw comparisonsof musicandlanguagein termsof
syntax,grammar, andsemantics.For example,Lerdahland
Jackendoff [7] formulateda theoryof musicalgrammarto
analyzemusicin a syntacticway. In contrastto othercom-
posers,LerdahlandJackendoff followedstrict rulesin mu-
sicalgrammarandcomposedmelodiesin thesameway as
peopleformulatesentencesin a language.

Following this idea,in this paperwe assumethatmusicis a
form of languagethatcanbeexpressedwith musicalgram-
mar, andrulesin suchgrammararenumerousanduniversal.
Sincethe grammaris large, we hypothesizethat different
composersutilize differentsubsetsof theserules.BelaBar-
tok, a well-known 20th centurycomposer, canbe usedto
illustratethis hypothesis.Bartok’s work hasbeenanalyzed
in detail; for example,Antokoletz [2] proposeda system
thatcouldserve asa meansto formulateandorganizeBar-
tok’s music. Onecharacteristicof Bartok’s work is theuse
of certaincell structures(patternsof tonalmusic),whichare
foundmorefrequentlyin hiswork thanthoseof othercom-
posers[3]. Basedon this analysis,we maydesigna system
to simulateBartok’smusicby usingacommonsetof musi-

cal grammarrulesanda specificsetof rulesaboutthecell
structurescharacteristicto Bartok. We believe that the re-
sultsfrom thissystemwill sound,to anextent,likeBartok’s
music.

Artificial compositionhasbeenan active researchareafor
a long time. Techniquesinvolving perception[8], emotion
[13] andpsycho-acoustics[11] have beenproposed.These
approachespresumedacertainstateof mindandtriedto ap-
proximatethestreamof thoughtwhile acomposeris writing
hisor hermusic.While theresultswerepromising,they of-
tenlackedflexibility in generatingvariationsin themelody,
andthey drew little supportfrom music theory. Otherap-
proachesweremorescientificin that they useda statistical
model [11] or a knowledgebase[1] to estimateor predict
eachstepin thecomposition.Thesemodelsworkedwell in
emulatingspecificstyle of composition,but they werenot
able to generatevariation not predefinedin the database.
Recently, Todd and Loy [15] and Desain[5] useda con-
nectionistapproachon music composition. Using neural
networkson musiccompositionis inherentlyhardbecause
their behavior is not easyto predictnor control. However,
the connectionistapproachpromisedto give moreflexibil-
ity andanability to createnovel situations,which makesit
a suitablemethodfor ourexperiment.

In thispaper, aneuralnetwork is usedto generatemelodies,
anda setof compositionrules(commonrulesandBartok’s
rules)is usedasconstraintsto evaluatethem.This way, the
resultsshouldevolve to satisfytheconstraints,andgive us
Bartok-likemelodieswith creativevariations.

2 Architecture

Themostcommonneuralnetwork architectureis thethree-
layerfeed-forwardnetwork. However, sucha network does
not containa mechanismto rememberpasthistory. This
makes it unsuitablefor the musicgenerationtaskbecause
repetitive rhythmic patternsandpitchesare importantele-
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Figure 1: The melody generation network. The valuesof the
output nodesat time t are copiedto the input nodes
at time T

�
1, anda copy of thehiddenlayer is saved

in the context layer. This way, the network cangen-
erateoutput sequencesfrom an initial startingpoint.
The network is fully connectedin the forward direc-
tion, andits forwardweightsareevolved.

mentsin composition.Instead,a recurrentnetwork suchas
the SRN[6] is necessary. Our modelis basedon the SRN
with the following input/outputscheme(figure1): The in-
put layer representsa measureat time T, and the output
layerrepresentsthemeasureat time T � 1. In otherwords,
we feedthe SRN network the currentmeasureas input to
getthenext measureandthis waycomposethemelodyone
measureat thetime.

2.1 Representing Musical Notation
It is difficult to find a suitableencodingschemefor music
becauseof its many dimensionsof variation. Therefore,
in this initial stageof development,we limit the available
rhythmicnotationsto fivetypes:awholenote,ahalf note,a
quarternote,a eighthnoteanda sixteenthnote.No restsor
dottednotesareused.Therangeof pitchesis alsoshortened
to threeoctaves,from C2to C5. Thedetailsof theencoding
schemearedescribedbelow.

2.1.1 Relative Pitch Encoding. Two pitch encoding
methods,absoluteand relative pitch are possible. Initial
experimentsshowedthat relative pitch encodingwasmore
effective at generatinggoodmusicalsequences.This is an
intuitive resultbasedon humanperformance.Peoplewith
absolutepitch can identify the pitch without any previous
tonal context available. Suchpeopleare extremely rare,
aboutonepercentof a populationof trainedmusicprofes-
sionals.On theotherhand,relative pitch is moreof a skill
thana talent.Peoplecanbetrainedto excel in pitch identi-
ficationif known pitchesaregivenbeforehandasreferences
[9]. Therefore,it is naturalto userelative pitch on a neural
network that is trainedto producemusicbasedon its past
experience.

On the output layer, we usean arrayof nodesto represent
interval stepsrelativeto a referencenote.Eachnodeis sepa-
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−3 −2 −1 0 +1−4 +2 +3 +4

0.45 0.788 −0.540.88

−3 −2 −1 0 +1−4 +2 +3 +4

1.4 −1.43 0.21 0.230.43

1.4 0.45 −1.43 0.788 0.21 0.88 −0.54 0.43 0.23

Figure 2: Relative pitch representation. Eachoutputnodecor-
respondsto an increaseor decreasein pitch of a half-
step.Thenodethathasthehighestvaluewins. In this
case,thewinneris -4. If thereferencenoteis G4, then
theresultis G4 -4 = D4#.

ratedbyonehalf step,thesmallestunit in tone.Theleftmost
nodehasthemostnegativenumber, andtherightmostnode
hasthemostpositive number. Themiddlenoderepresents
zerodifferencein pitch.

In somecases,theoutputwill drivethepitchoutof theavail-
able rangeof pitchesin the representation.For example,
if the outputfrom the network continuesto raisethe pitch
higher thanthe previous pitch, eventuallythe outputpitch
will behigherthanC5,theupperboundin ourexperiments.
The solutionis to lower this pitch by an octave to get per-
ceptuallytheclosestpitch. We applythesametechniqueto
the out of lower boundsituation: the pitch is raisedby an
octave.

2.1.2 Duration Representation. An arrayof five nodes
areusedto representthetoneduration.Theimplementation
is similar to the pitch representation,however, eachnode
doesnot correspondto a specificoffsetbut ratherto a dura-
tion. Thenodewith thehighestvaluewins andits duration
is assignedto the currentnote. If morethanonenodeend
up with the samehighestvalue,the nodethat corresponds
to thelongestdurationwins.

2.2 Representing Measures
Measuresarethe building blocksin a melody. Eachmea-
surecorrespondsto the samelengthof time. The duration
of all notesinsidea measuremustaddup to that length. In
our experimentwe useoneunit of time asthelengthof the
measureso that we canfit exactly onewhole note,or two
half notes,or four quarternotes,or any combinationsof
notesthatsumupto onein ameasure.Wewill call thecon-
catenationof onedurationrepresentationandonepitchrep-
resentationa D-P pair. A measurerepresentationconsists
of sixteenD-P pairs(figure3). A measureis extractedfrom
this representationaccordingto thefollowing algorithm:

OneD-P pair is decodedatatimestartingfrom theleftmost
pairontheoutputlayer. Thedurationof thenoteis summed
to a variableT. If thedurationin T hasnot exceedoneunit
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Figure 3: Duration and pitch pairing. Onedurationrepresen-
tationandonepitch representationareconcatenatedto
form a D-P pair. Thereare16 D-P pairsin a measure;
only thedurationup to oneunit of time is used.

of time, we decodenext D-P pair. If T exceedsoneunit
of time, we take only a portion of the durationto make T
exactlyoneunit of time.

2.3 Genetic Algorithm
Geneticalgorithms(GA) arewell suitedfor musiccomposi-
tion becausethey canexplorethesolutionspacein parallel
and searchfor optimal combinations. We usegenetical-
gorithmsto evolve a network to producebettermelodies.
Recently, Moriarty and Miikkulainen [10] developedan
efficient neuro-evolution systemcalledSANE (Symbiotic,
AdaptiveNeuro-Evolution).SANEis quickandexplorative
in evolving neuralnetworks. Our systemusesSANE to ef-
fectively guidetheevolution to goodsolutions.

The quality of the melodiesproducedby the networks is
measuredbasedon how well they matchagivensetof con-
straints. This generalapproachhasbeenshown effective
in thetaskof evolving syllablesystems[12]. Like thatof a
syllablesystem,thequalityof amelodycannotbemeasured
quantitatively asa whole. Instead,we evaluatethemelody
basedonhow well it satisfiesasetof compositionrulesfrom
musictheory. Weassociateeachrulewith aweight,andthe
melodygetsa percentageof eachweight. Collectively all
scoresadd up to a total that representsthe quality of the
melody.

Thereare two constraintcategories: rules describingthe
style of a composerand generalrules drawn from music
theory. Thefirst threerulesbelow concernspecificmusical
sequencesidentifiedascommonto BelaBartok.Thefourth
rule definesa generalconstrainton pitch class,andthe last
threerulesrepresentgeneralcompositionprinciples.

2.3.1 X-Cell, Y-Cell, and Z-Cell Structure Constraints.
All notesin the measuresareplayedin a continuousfash-
ion; therefore,when analyzingcell structures,it is con-
venientto eliminatethe measureboundariesand treat the
wholemelodyasonesegment. We calculatethe pitch dif-
ferencebetweensuccessivenotesin half steps, theunit dis-
tancein tonal analysis.Startingfrom the beginningof the
melody, we searchfor occurrencesof X-Cell, Y-Cell and
Z-Cell structures.An X-Cell is a groupof four noteseach
separatedby ahalf stepin eitherdirectionfrom theprevious

one;aY-Cell is asimilargroupof four noteseachseparated
by two half steps,andaZ-Cell is agroupof four notessep-
aratedfirst by two half steps,thenby four half steps,and
finally by two half steps.Thepitchesof thenotesin a cell
mayvary aslong astheir separationmatchesthecell struc-
ture. An exampleof the X-Cell is C-C#-C-B,whereeach
noteis a half stepapart.An exampleof theY-Cell is C-D-
E-F#andof theZ-Cell is G-A-F-G.

To scorea melodyaccordingto how well it matchesa cell
structureconstraint,we counthow many timesthecell pat-
ternoccursoverthemaximumnumberof patterns,andmul-
tiply by theweight:

Fs �
Ns

NN
�
4

Ws �

whereFs is the fitnessfunction for the constraint(X, Y, or
Z-cell), Ns is thenumberof sequencesthatcontainthis cell
structure,NN is thenumberof notesin themelody, andWs is
theweightof theconstraint.Sincethecell structuresconsist
of four notes,themaximumnumberof cells thatcanoccur
in themelodyis NN

�
4.

2.3.2 Pentatonic Pitch Class Constraint. A pitch class
definesa subsetof pitchesthatcanbeselectedfrom anoc-
tave in the composition. Pitch classesarewell definedin
musictheoryandarethebasisfor euphoniousmusic. Pen-
tatonicpitch class,for example,consistsof C, D, E, G, and
A tones. Thereareotherpitch classessuchasOctatonic,
Whole-tone,Mixolydian, andDorian; they arenot imple-
mentedin thecurrentsystem.Thepitch classconstraintis
calculatedby countingthe numberof notesthat belongto
thepentatonicpitch classanddivide by thetotal numberof
notes,multipliedby theweight:

Fc �
Nc

NN
Wc �

whereFc is thefitnessfunctionfor this constraint,Nc is the
numberof notesthat arein the pitch class,NN is the total
numberof notesin themelody, andWc is theweightof the
pitch classconstraint.

2.3.3 Pitch Diversity Constraint. Pitch diversity is a
harderconstraintto be implementbecausethereis no ob-
vious approachto judge diversity. In principle it would
be necessaryto look at the entiremelody, which would be
very time-consuming.Instead,we take a simplerapproach:
we count the numberof measuresthat have uniquepitch
sequences.However, if two patternsare the sameunder
transposition1, they soundalike andshouldnot becounted

1Transpositionis a techniqueto producethe samesequenceof notes
from adifferentstartingpitch. For example,A4-C4-D4undertransposition
with E4 becomesE4-F4#-F4.Themostcommontranspositionis to raise
or lower thesegmentby anoctave.



as different measures.Therefore,we calculatethe inter-
valsbetweenpitchesandform a signaturestringuniqueto
thatmeasureandthesamemeasureunderall transpositions.
For example, the measureC3-D3-D3-B2 hasa signature
“2u03d”, which standsfor two up, zero, and threedown.
Thesumof all uniquesignaturesisdividedby thetotalnum-
berof measuresandmultipliedby its fitnessscore:

Fp �
Np

NM
Wp �

whereFp is thefitnessfunctionfor thisconstraint,Np is the
numberof uniquesignaturesderivedfrom measures,NM is
the numberof measures,andWp is the weightof thepitch
diversityconstraint.

2.3.4 Rhythmic Diversity Constraint. Rhythmicanaly-
sisis easierthanpitchanalysisbecausethereis notransposi-
tion. As with pitch,we usemeasuresasthebasisfor calcu-
lation,andfollow thesamestepsasin pitchdiversityanaly-
sis. We form a signaturestringfor every measurebasedon
its rhythmicnotation.For examplea sequenceof aneighth
note,an eighthnote,anda quarternotewould have a sig-
natureof “884”. Theequationis analogousto thatof pitch
diversityconstraint:

Fr �
Nr

NM
Wr �

whereFr is thefitnessfunctionfor this constraint,Nr is the
numberof uniquesignaturesderivedfrom measures,Nr � M
is thenumberof measures,andWr is theweightof therhyth-
mic diversityconstraint.

2.3.5 Measure Density Constraint. The MeasureDen-
sity constraintis includedto encourageevolution to favor
measureswith many notes.This constraintis implemented
asfollows: calculatethenumberof notesin themelodyand
divide by the maximumnumberof notesthat can fit in a
melody:

Fm �
Nm

16NM
Wm

whereFm is the fitnessfunction of this constraint,Nm is
the numberof notes,NM is the numberof measuresin the
melody, andWm is theweightof this constraint.Eachmea-
suremayhave at most16 sixteenthnotes,sothemaximum
numberof notesis 16NM.

3 Experiments

The outputmelodiesareshapedby the constraints.If any
of thecell constraintsis active (i.e. hasa largeweight),we
shouldseecell structuresof thatkind in themelody. If the
pitchclassconstraintis on,weexpectto hearpitchesmostly

(a)averageandbestfitness (b) y-cell structure

Figure 4: Evolution under the Y-Cell constraint only. Theav-
eragefitnessof the populationand the fitnessof the
bestindividual over time is plottedon theleft. On the
right, thepercentageof Y-Cell structureis plotted.The
graphsshow thatevolution quickly convergesto opti-
mizetheconstraint.

in thatpitchclass.Thediversityconstraintsshouldpromote
variationsbetweenmeasures,andthemeasuredensitycon-
straintis designedto controltheaveragenumberof notesin
a measure.

We will test the systemin two stages.First, we will dis-
ableall constraintsbut oneandevolve the networks using
that oneconstraint. We expect that the resultingmelodies
expresstheconstraint.After all of theconstraintsareveri-
fied to work alone,we will put themtogetherandobserve
the differentways in which evolution tries to satisfy them
simultaneously.

In the first experimentonly the Y-Cell contraintwasacti-
vated. After 10 generationsin the evolution, 95% of the
cell patternswereY-Cells(figure4). We observedasimilar
trendwhenrunning the systemwith the X-Cell constraint
alone.With theZ-Cell constraint,thesystemtook twice as
many generationsbut dideventuallyarriveatsimilarresults.
Evolutionwith theMeasureDensityconstraintveryquickly
favoredthosenetworksthatproducedmelodieswith lots of
shortnotesin measures.Both diversityconstraintsworked
well too in thattherewerenosimilarmeasuresin theresult-
ing melodies. Finally, evolution with the PentatonicPitch
Classconstraintquickly favoredthosemelodieswith mostly
pentatonicnotes.

The above resultsshow that the evolution works well un-
der a simpleconstraintenvironment. In the secondexper-
iment, the systemwas testedwith several simultaneously
active constraints.We enabledall constraintsexcepttheY-
Cell constraintandtheZ-Cell constraint.Eachactive con-
straint was assignedwith an equalweight, except the X-
Cell constraint,which hada higherweight. We expected
theevolution to outputmelodieswith many X-Cellsaswell
asmaintainingdiversityanddensity. After severalhundred
generationsin the evolution, the systemindeedlearnedto
outputthis kind of melodies(figure5).

To illustrate, let us examinetwo melodies: the first one,



(a)averageandbestfitness (b) x-cell structure

(c) rhythmicdiversity (d) measuredensity

(e) pitchdiversity (f) pentatonicpitchclass

Figure 5: Evolution with multiple constraints. The average
fitnessof thepopulationandthefitnessof thebestin-
dividual over time is plotted on the upper left. The
otherpanelsshow theextentto which theX-cell struc-
ture, pentatonicpitch class,pitch diversity, rhythmic
diversity and measuredensity constraintswere sat-
isfied. Different runs find in different tradeoffs be-
tweenthe constraints,resultingin systematicallydif-
ferentmelodies.

shown in figure 6, was taken at the 194thgeneration,and
the second(in figure 7) was the final bestmelody at the
200thgeneration.2 Thestatisticsdescribingthesemelodies
areshown in table1. It is intriguingto comparethestylesof
thesesamples.The two melodiesscoredroughly the same
fitnessscore,but they soundverydifferent.Thefirst melody
consistof more densemeasureswhile the other hasa lot
moreX-Cells. Also, thefirst onehadgreaterpitch diversity
but had fewer notesin the pentatonicpitch class. Sucha
drasticchangein style is commonin evolution: evolution
exploresdifferentaspectsof stylein parallelwhile continu-
ing to gainhigherfitnessscoresoverall. This way, interest-
ingandcreativesolutionscanbegeneratedto theproblemof
satisfyingthe musicalgrammarconstraints.Second,there
is aremarkableconsistency of stylewithin eachmelodyand
variation of the basic themes. Such property makes the
melodiessoundinterestingandmeaningful,asopposedto
mechanicalor random.

The consistency with variationpropertyis due to the net-
2Sound for these and other example melodies can be found at

www.cs.utexas.edu/users/nn/pages/research/neuroevolution.html.

Table 1: Statistics of sample melodies at the 194th and the
200th generation.

Gener- X- Pitch Pitch Rhythmic Measure
ation Cell Class Diversity Diversity Density
194 25% 39% 25% 6% 88%
200 76% 50% 6% 6% 38%

work architectureused. With SRN, the systemlearnsto
output patternsthat it haspreviously generated.As seen
in figure 6 and7, the systemnaturally adoptedtransposi-
tion asa meansto reproducesimilar patternsbut beginning
at a differentpitch. Oncethesystemfindsa goodmeasure
that scoreshigh on all constraints,it usestranspositionto
fill themelodywith the samemeasures.We alsoobserved
that therewereslight variationsin the measures(figure6).
By alteringa few notesin eachmeasure,themelodypartly
satisfiedthepitch diversityconstraintandscored25%of its
weight.

4 Discussion and Future Work

Thesystemworkedwell in severalaspects.First,evolution
wasableto respondto differentconstraintweightsandpro-
ducemelodiesof the desiredkind in eachcase. Second,
it generatedvariationwithin theseconstraints,i.e. distinc-
tively different ways to satisfy them. Third, within each
melodytherewassystematicstructure,but alsoa variation
of this structure,which givesthemelodiesa moreinterest-
ing feel thanis commonin mechanicalcomposition.These
propertiesresult directly from the architectureof the sys-
tem,thatis, from evolutionof simplerecurrentnetworks.

However, thesystemin its presentform is limited in many
ways.Weomitteddottednotesandrestsaswell astriadand
otherchords.Thereis currentlyno representationfor mul-
tiple instrumentsor complements.Therule setin generalis
rathersimpleandcouldbeexpandeda lot. For example,in
the16thcenturytherewasanattemptto formulatemelodies
into a setof rules [14]. The ruleswerewell documented,
andmusicscholarsover the centuriesusedthemfor their
composition.It would be interestingto includetheserules
in the systemandcompareto the musiccomposedat that
time.

The most seriouschallenge,however, is global structure.
Whenlisteningto thesamples,wenoticedthatthemelodies
lackeda certainglobalflow. Melodiesweregeneratedone
measureatatime. Individually themeasuressoundedgood,
andthey werediverse,but theiroverallorganizationwasnot
satisfactory. It would bepossibleto adda constraintto the
systemto definetheflow betweenmeasures.Thechallenge



Figure 6: Sample melody at the 194th generation. The mea-
suresaredensebut only 25%of thenotesaremembers
of X-Cells. Most of themeasuresaretransposedfrom
onebasicstylewith somevariations.

Figure 7: Sample melody at the 200th generation. The mea-
suresarelessdenseand75%of thenotesaremembers
of X-Cells. All measuresaretransposedfrom oneba-
sic style with little variation. Half of the notesarein
thepentatonicpitchclass.

is to describecomputationallywhata goodflow is.

5 Conclusions

Theneuroevolutionsystemdevelopedin thispaperservesas
abasicframework for artificial compositionusingrulesand
principlesfrom musictheory. Combiningcommoncompo-
sitionrulesandspecificstyledescriptionsof Bartok,thesys-
temgeneratesmelodiesthat locally resembleBartok’s mu-
sic. Thoughtheresultsarestill simple,they arepromising
andlikely to improve if morecompositionrulesareadded
to thesystem.
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