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Abstract

Musiccompositioris a domainwell-suitedfor evolutionary
reinforrementearning Insteadof applyingexplicit compo-
sition rules,a neurl networkis usedto geneate melodies.
An evolutionaryalgorithmis usedto find a neural network
that maximizesthe chance of generting good melodies.
Compositiorruleson tonality and rhythmare usedas a fit-
nessfunctionfor the evolution. We observethat the model
learnsto geneimte melodiesaccoming to theserules with
interestingvariations.

1 Introduction

SincelLeonardBernsteins lectureon music and language
in 1973 at Harvard, mary music scholarshave worked on

the theoryand practiceof musicalgrammar[4]. Theidea
is to draw comparison®f musicandlanguagen termsof

syntax,grammayandsemanticsFor example,Lerdahland

Jaclendof [7] formulateda theory of musicalgrammarto

analyzemusicin a syntacticway. In contrasto othercom-

poserslerdahlandJaclendof followed strict rulesin mu-

sicalgrammarandcomposednelodiesin the sameway as

peopleformulatesentencem alanguage.

Following thisidea,in this papemwe assumehatmusicis a
form of languagehatcanbe expressedvith musicalgram-
mar, andrulesin suchgrammarmarenumerousanduniversal.
Sincethe grammaris large, we hypothesizethat different
composersitilize differentsubset®f theserules.BelaBar

tok, a well-known 20th centurycomposercan be usedto

illustratethis hypothesis Bartok’s work hasbeenanalyzed
in detail; for example, Antokoletz [2] proposeda system
thatcould sene asa meango formulateandorganizeBar-

tok’s music. Onecharacteristiof Bartok’s work is the use
of certaincell structuregpatternsof tonalmusic),whichare
foundmorefrequentlyin his work thanthoseof othercom-
poserd3]. Basedonthis analysiswe maydesigna system
to simulateBartok's musicby usingacommonsetof musi-

cal grammarrulesanda specificsetof rulesaboutthe cell
structurescharacteristido Bartok. We believe thatthe re-
sultsfrom this systenwill soundto anextent,like Bartok's
music.

Artificial compositionhasbeenan active researchareafor
along time. Techniquesnvolving perception8], emotion
[13] andpsycho-acousticEl 1] have beenproposed.These
approachepresumed certainstateof mind andtriedto ap-
proximatethestreanof thoughtwhile acomposers writing
his or hermusic.While theresultswerepromising,they of-
tenlackedflexibility in generatingsariationsin themelody,
andthey drew little supportfrom musictheory Otherap-
proachesveremorescientificin thatthey useda statistical
model[11] or a knowledgebase[1] to estimateor predict
eachstepin the composition.Thesemodelsworkedwell in
emulatingspecificstyle of composition,but they were not
able to generatevariation not predefinedin the database.
Recently Todd and Loy [15] and Desain[5] useda con-
nectionistapproachon music composition. Using neural
networks on musiccompositionis inherentlyhardbecause
their behavior is not easyto predictnor control. However,
the connectionisgpproackpromisedto give moreflexibil-
ity andanability to createnovel situations which makesit
asuitablemethodfor our experiment.

In this paperaneuralnetwork is usedto generatenelodies,
anda setof compositionrules(commonrulesandBartok’s
rules)is usedasconstraintgo evaluatethem. This way, the
resultsshouldevolve to satisfythe constraintsandgive us
Bartok-like melodieswith creative variations.

2 Architecture

The mostcommonneuralnetwork architecturds thethree-
layerfeed-forwardnetwork. However, sucha network does
not containa mechanisnto remembemasthistory. This
makesit unsuitablefor the music generatiortask because
repetitve rhythmic patternsand pitchesare importantele-



output Iayer/é}&g ; ) copy
(g

Figure 1: The melody generation network. The valuesof the
outputnodesat time t are copiedto the input nodes
attime T + 1, anda copy of thehiddenlayeris saved
in the context layer This way, the network cangen-
erateoutput sequence$rom an initial startingpoint.
The network is fully connectedn the forward direc-
tion, andits forward weightsareevolved.

mentsin composition.Insteada recurrentnetwork suchas
the SRN|[6] is necessaryOur modelis basedon the SRN
with the following input/outputschemgfigure 1): Thein-
put layer representsa measureat time T, and the output
layerrepresentshemeasurattime T + 1. In otherwords,
we feedthe SRN network the currentmeasureasinput to
getthe next measureandthis way composehe melodyone
measureatthetime.

2.1 Representing Musical Notation

It is difficult to find a suitableencodingscheméeor music

becauseof its mary dimensionsof variation. Therefore,
in this initial stageof development,we limit the available

rhythmicnotationgo fivetypes:awholenote,ahalf note,a

gquartemote,a eighthnoteanda sixteenthnote. No restsor

dottednotesareused.Therangeof pitchesis alsoshortened
to threeoctaves,from C2to C5. Thedetailsof theencoding
schemearedescribedelow.

2.1.1 Relative Pitch Encoding. Two pitch encoding
methods,absoluteand relative pitch are possible. Initial
experimentsshoved that relative pitch encodingwasmore
effective at generatinggoodmusicalsequencesThis is an
intuitive resultbasedon humanperformance.Peoplewith
absolutepitch canidentify the pitch without ary previous
tonal context available. Such peopleare extremely rare,
aboutone percentof a populationof trainedmusicprofes-
sionals.On the otherhand,relative pitch is more of a skill
thanatalent. Peoplecanbetrainedto excelin pitch identi-
ficationif known pitchesaregivenbeforehandsreferences
[9]. Thereforejt is naturalto userelative pitch on a neural
network thatis trainedto producemusic basedon its past
experience.

On the outputlayer, we usean array of nodesto represent
interval stepsrelative to areferencenote.Eachodeis sepa-
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Figure 2: Relative pitch representation. Eachoutputnodecor
respondgo anincreaseor decreasén pitch of a half-
step. The nodethathasthe highestvaluewins. In this
casethewinneris -4. If thereferencenoteis G4,then
theresultis G4 -4 = D4#.

ratedby onehalf step thesmallesunitin tone. Theleftmost
nodehasthe mostnegative number andtherightmostnode
hasthe mostpositve number The middle noderepresents
zerodifferencen pitch.

In somecasestheoutputwill drivethepitchoutof theavail-

ablerangeof pitchesin the representation.For example,
if the outputfrom the network continuesto raisethe pitch

higherthanthe previous pitch, eventuallythe output pitch

will behigherthanC5, theupperboundin our experiments.
The solutionis to lower this pitch by an octave to getper

ceptuallythe closestpitch. We applythe sametechniqueto

the out of lower boundsituation: the pitch is raisedby an

octave.

2.1.2 Duration Representation. An array of five nodes
areusedto representhetoneduration. Theimplementation
is similar to the pitch representationhowever, eachnode
doesnot correspondo a specificoffsetbut ratherto a dura-
tion. Thenodewith the highestvaluewins andits duration
is assignedo the currentnote. If morethanonenodeend
up with the samehighestvalue,the nodethat corresponds
to thelongestdurationwins.

2.2 Representing M easures

Measuresarethe building blocksin a melody Eachmea-
surecorrespondso the samelengthof time. The duration
of all notesinsidea measuranustaddup to thatlength. In
our experimentwe useoneunit of time asthelengthof the
measureso that we canfit exactly onewhole note, or two
half notes, or four quarternotes,or ary combinationsof
notesthatsumupto onein ameasureWe will call thecon-
catenatiorof onedurationrepresentatioandonepitchrep-
resentatiora D-P pair. A measur@epresentatiolconsists
of sixteenD-P pairs(figure3). A measurés extractedfrom
this representatioaccordingo thefollowing algorithm:

OneD-P pairis decodedatatime startingfrom theleftmost
pairontheoutputlayer. Thedurationof thenoteis summed
to avariableT. If thedurationin T hasnot exceedoneunit
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Figure 3: Duration and pitch pairing. Onedurationrepresen-
tationandonepitch representatioareconcatenatetb
form a D-P pair. Thereare16 D-P pairsin ameasure;
only thedurationup to oneunit of time is used.

of time, we decodenext D-P pair. If T exceedsone unit
of time, we take only a portion of the durationto make T
exactly oneunit of time.

2.3 Genetic Algorithm

Geneticalgorithms(GA) arewell suitedfor musiccomposi-
tion becausehey canexplorethe solutionspacen parallel
and searchfor optimal combinations. We use genetical-
gorithmsto evolve a network to producebettermelodies.
Recently Moriarty and Miikkulainen [10] developedan
efficient neuro-&olution systemcalled SANE (Symbiotic,
Adaptive Neuro-Ewlution). SANE is quick andexplorative
in evolving neuralnetworks. Our systemusesSANE to ef-
fectively guidethe evolution to goodsolutions.

The quality of the melodiesproducedby the networks is
measuredasedn how well they matcha givensetof con-
straints. This generalapproachhasbeenshavn effective
in thetaskof evolving syllablesystemd12]. Like thatof a
syllablesystemthequality of amelodycannotbe measured
quantitatvely asa whole. Instead we evaluatethe melody
basednhow well it satisfiesasetof compositiorrulesfrom
musictheory We associateachrule with aweight,andthe
melody getsa percentagef eachweight. Collectively all
scoresadd up to a total that representghe quality of the
melody

There are two constraintcategories: rules describingthe
style of a composerand generalrules dravn from music
theory Thefirst threerulesbelon concernspecificmusical
sequenceglentifiedascommonto BelaBartok. Thefourth
rule definesa generalconstrainton pitch class,andthe last
threerulesrepresengenerakcompositionprinciples.

2.3.1 X-Cdll, Y-Céell, and Z-Cell Structure Constraints.

All notesin the measureare playedin a continuousfash-
ion; therefore,when analyzingcell structures,it is con-
venientto eliminatethe measureboundariesand treatthe
whole melodyasone segment. We calculatethe pitch dif-

ferencebetweersuccessie notesin half stepsthe unit dis-
tancein tonal analysis. Startingfrom the beginning of the
melody we searchfor occurrenceof X-Cell, Y-Cell and
Z-Cell structures.An X-Cell is a groupof four noteseach
separatethy a half stepin eitherdirectionfrom theprevious

one;aY-Cellis asimilargroupof four noteseachseparated
by two half stepsanda Z-Cell is agroupof four notessep-
aratedfirst by two half steps,thenby four half steps,and
finally by two half steps.The pitchesof the notesin a cell
may vary aslong astheir separatiomatcheghe cell struc-
ture. An exampleof the X-Cell is C-C#-C-B,whereeach
noteis a half stepapart. An exampleof the Y-Cell is C-D-
E-F#andof theZ-Cell is G-A-F-G.

To scorea melodyaccordingto how well it matchesa cell
structureconstraintwe counthow mary timesthecell pat-
ternoccursoverthe maximumnumberof patternsandmul-
tiply by theweight:
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whereFs is the fitnessfunction for the constraint(X, Y, or

Z-cell), Ns is thenumberof sequencethat containthis cell

structureNy is thenumberof notesin themelody, andW is

theweightof theconstraint.Sincethecell structuresonsist
of four notes,the maximumnumberof cellsthatcanoccur
in themelodyis Ny /4.

2.3.2 Pentatonic Pitch Class Constraint. A pitch class
definesa subsef pitchesthatcanbe selectedrom anoc-
tave in the composition. Pitch classesare well definedin
musictheoryandarethe basisfor euphoniousnusic. Pen-
tatonicpitch class for example,consistof C, D, E, G, and
A tones. Thereare other pitch classessuchas Octatonic,
Whole-tone,Mixolydian, and Dorian; they are not imple-
mentedin the currentsystem. The pitch classconstraintis
calculatedby countingthe numberof notesthat belongto
the pentatonigitch classanddivide by thetotal numberof
notes,multiplied by theweight:

FC = S_EIWQ
whereF; is thefitnessfunctionfor this constraintN; is the
numberof notesthatarein the pitch class,Ny is thetotal
numberof notesin the melody, andW; is theweightof the
pitch classconstraint.

2.3.3 Pitch Diversity Constraint. Pitch diversity is a
harderconstraintto be implementbecausehereis no ob-
vious approachto judge diversity. In principle it would
be necessaryo look at the entire melody which would be
verytime-consuminglnsteadwe take a simplerapproach:
we countthe numberof measureghat have unique pitch
sequences.However, if two patternsare the sameunder
transposition, they soundalike andshouldnot be counted

ITranspositioris a techniqueto producethe samesequencef notes
from adifferentstartingpitch. For example A4-C4-D4undertransposition
with E4 become£4-F4#-F4. The mostcommontranspositionis to raise
or lower thesggmentby anoctave.



as different measures. Therefore,we calculatethe inter
vals betweenpitchesandform a signaturestring uniqueto
thatmeasurendthesamemeasurainderall transpositions.
For example, the measureC3-D3-D3-B2 has a signature
“2u03d”, which standsfor two up, zero, and threedown.
Thesumof all uniquesignaturess dividedby thetotalnum-
berof measureandmultiplied by its fithessscore:
N
Fo= N—;Wp,

whereF, is thefitnessfunctionfor this constraintNp is the
numberof uniquesignatureslervedfrom measuresNy is
the numberof measuresandW, is the weight of the pitch
diversity constraint.

2.3.4 Rhythmic Diversity Constraint. Rhythmicanaly-
sisis easiethanpitch analysishecausé¢hereis notransposi-
tion. As with pitch, we usemeasuresisthe basisfor calcu-
lation,andfollow the samestepsasin pitch diversityanaly-
sis. We form a signaturestring for every measureéasedon
its rhythmic notation. For examplea sequencef aneighth
note, an eighth note,anda quarternote would have a sig-
natureof “884”. Theequationis analogoudo thatof pitch
diversityconstraint:

Fr = Nl'\r/lvvra
whereF; is the fitnessfunctionfor this constraintN; is the
numberof uniquesignaturesiervedfrom measuresiN;, M
isthenumberof measuresandWw; is theweightof therhyth-
mic diversity constraint.

2.3.5 Measure Density Constraint. The MeasureDen-
sity constraintis includedto encouragesvolution to favor
measuresvith mary notes. This constraintis implemented
asfollows: calculatethe numberof notesin themelodyand
divide by the maximumnumberof notesthat canfit in a
melody: N
m

Fm = 16Ny Wen
where Fy, is the fitnessfunction of this constraint,Nn, is
the numberof notes,Ny is the numberof measuresn the
melody andW, is the weightof this constraint. Eachmea-
suremay have at most16 sixteenthnotes,sothe maximum
numberof notesis 16Ny .

3 Experiments

The outputmelodiesare shapedoy the constraints.If ary
of the cell constraintgs active (i.e. hasa large weight), we
shouldseecell structuresof thatkind in the melody If the
pitch classconstrainis on, we expectto hearpitchesmostly

(a) averageandbestfitness (b) y-cell structure

Figure 4: Evolution under the Y-Cell constraint only. Theav-
eragefitnessof the populationand the fitnessof the
bestindividual over time is plottedon theleft. Onthe
right, thepercentagef Y-Cell structures plotted. The
graphsshaw that evolution quickly convergesto opti-
mizetheconstraint.

in thatpitch class.Thediversityconstraintshouldpromote
variationshetweermeasuresandthe measuralensitycon-
straintis designedo controltheaveragenumberof notesin
ameasure.

We will testthe systemin two stages. First, we will dis-

ableall constraintshut one and evolve the networks using
that one constraint. We expectthat the resultingmelodies
expressthe constraint. After all of the constraintsareveri-

fied to work alone,we will putthemtogetherandobsene

the differentwaysin which evolution tries to satisfythem
simultaneously

In the first experimentonly the Y-Cell contraintwas acti-

vated. After 10 generationsn the evolution, 95% of the
cell patternswvereY-Cells (figure4). We obseneda similar
trendwhenrunning the systemwith the X-Cell constraint
alone.With the Z-Cell constraintthe systemtook twice as
mary generationsut did eventuallyarriveatsimilarresults.
Evolutionwith the MeasureDensityconstraintvery quickly

favoredthosenetworksthatproducedmelodieswith lots of

shortnotesin measuresBoth diversity constraintsvorked
well tooin thattherewereno similar measuref theresult-
ing melodies. Finally, evolution with the PentatonidPitch

Classconstrainguickly favoredthosemelodiesvith mostly
pentatonimotes.

The above resultsshav that the evolution works well un-
der a simple constraintervironment. In the secondexper
iment, the systemwas testedwith several simultaneously
active constraints We enabledall constraintexceptthe Y-
Cell constraintandthe Z-Cell constraint.Eachactive con-
straintwas assignedwith an equalweight, exceptthe X-
Cell constraint,which had a higherweight. We expected
theevolution to outputmelodieswith marny X-Cells aswell
asmaintainingdiversityanddensity After severalhundred
generationsn the evolution, the systemindeedlearnedto
outputthis kind of melodies(figure5).

To illustrate, let us examinetwo melodies: the first one,



Table 1. Statistics of sample melodies at the 194th and the

200th generation.

Gener | X- Pitch Pitch Rhythmic | Measure
ation | Cell | Class| Diversity | Diversity | Density
194 | 25% | 39% 25% 6% 88%
200 | 76% | 50% 6% 6% 38%

(b) x-cell structure
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Figure 5: Evolution with multiple constraints. The average
fitnessof the populationandthe fitnessof the bestin-
dividual over time is plotted on the upperleft. The
otherpanelsshav the extentto which the X-cell struc-
ture, pentatonicpitch class, pitch diversity, rhythmic
diversity and measuredensity constraintswere sat-
isfied. Differentruns find in different tradeofs be-
tweenthe constraintsresultingin systematicallydif-
ferentmelodies.

shown in figure 6, wastaken at the 194th generationand
the second(in figure 7) was the final bestmelody at the
200thgeneratiorf. The statisticsdescribingthesemelodies
areshavnin tablel. It isintriguing to comparethestylesof

thesesamples.The two melodiesscoredroughly the same
fithessscore putthey soundvery different. Thefirst melody
consistof more densemeasuresvhile the other hasa lot

moreX-Cells. Also, thefirst onehadgreatempitch diversity
but had fewer notesin the pentatonicpitch class. Sucha
drasticchangein style is commonin evolution: evolution

exploresdifferentaspect®f stylein parallelwhile continu-
ing to gainhigherfitnessscoresoverall. This way, interest-
ing andcreative solutionscanbegeneratedo theproblemof

satisfyingthe musicalgrammarconstraints.Secondthere
is aremarkableonsisteng of stylewithin eachmelodyand
variation of the basicthemes. Such property makes the
melodiessoundinterestingand meaningful,as opposedo

mechanicabr random.

The consisteng with variation propertyis dueto the net-

2Sound for these and other example melodies can be found at
www.cs.uteas.edu/users/nn/pages/resbfewroevolution.html.

work architectureused. With SRN, the systemlearnsto
output patternsthat it haspreviously generated.As seen
in figure 6 and 7, the systemnaturally adoptedtransposi-
tion asa meango reproducesimilar patternsbut beginning
at a differentpitch. Oncethe systemfinds a goodmeasure
that scoreshigh on all constraintsjt usestranspositiornto
fill the melodywith the samemeasuresWe alsoobsened
thattherewereslight variationsin the measuregfigure 6).
By alteringafew notesin eachmeasurethe melodypartly
satisfiedthepitch diversityconstraintandscored25%of its
weight.

4 Discussion and Future Work

The systemworkedwell in severalaspectsFirst, evolution
wasableto respondo differentconstraintweightsandpro-
duce melodiesof the desiredkind in eachcase. Second,
it generated/ariationwithin theseconstraintsj.e. distinc-
tively differentwaysto satisfy them. Third, within each
melodytherewas systematicstructure but alsoa variation
of this structure which givesthe melodiesa moreinterest-
ing feelthanis commonin mechanicatomposition.These
propertiesresultdirectly from the architectureof the sys-
tem, thatis, from evolution of simplerecurrennetworks.

However, the systemin its presentform is limited in mary
ways. We omitteddottednotesandrestsaswell astriad and
otherchords. Thereis currentlyno representatiofor mul-
tiple instrumentsor complementsTherule setin generals
rathersimpleandcouldbeexpandedalot. For example,in
the16thcenturytherewasanattempto formulatemelodies
into a setof rules[14]. The ruleswerewell documented,
and music scholarsover the centuriesusedthem for their
composition.It would be interestingto includetheserules
in the systemand compareto the music composedat that
time.

The most seriouschallenge,however, is global structure.
Whenlisteningto the sampleswe noticedthatthemelodies
lacked a certainglobal flow. Melodiesweregeneratetne
measuratatime. Individually themeasuresoundedjood,
andthey werediverse but their overallorganizationwasnot
satishctory It would be possibleto adda constraintto the
systemto definetheflow betweermeasuresThechallenge



Figure 6: Sample melody at the 194th generation. The mea-
suresaredensebut only 25% of thenotesaremembers
of X-Cells. Most of the measuresiretransposedrom
onebasicstylewith somevariations.
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Figure 7: Sample melody at the 200th generation. The mea-
suresarelessdenseand75% of thenotesaremembers
of X-Cells. All measuresiretransposedrom oneba-
sic style with little variation. Half of the notesarein
the pentatonigitch class.

is to describecomputationallywhata goodflow is.

5 Conclusions

Theneuro@olutionsystendevelopedn this papersenesas
abasicframework for artificial compositiorusingrulesand
principlesfrom musictheory Combiningcommoncompo-
sitionrulesandspecificstyledescription®f Bartok,thesys-
tem generatesnelodiesthatlocally resembleBartok’s mu-
sic. Thoughtheresultsarestill simple,they arepromising
andlikely to improve if morecompositionrulesareadded
to the system.
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